Testing Math Support
Euler’s Identity
\[e^{i\pi} - 1 = 0\]Euler’s 1st Substitution
\[\int \dfrac{\mathrm{d} x}{\sqrt{x^2 + c}}\]given $c = \pm 1$
\[\int \dfrac{\mathrm{d} x}{\sqrt{x^2 + c}} = \mathrm{arcsinh}(x) + C\] \[\int \dfrac{\mathrm{d} x}{\sqrt{x^2 + c}} = \mathrm{arccosh}(x) + C\]