Testing Math Support

less than 1 minute read

Euler’s Identity

\[e^{i\pi} - 1 = 0\]


Euler’s 1st Substitution

\[\int \dfrac{\mathrm{d} x}{\sqrt{x^2 + c}}\]

given $c = \pm 1$

\[\int \dfrac{\mathrm{d} x}{\sqrt{x^2 + c}} = \mathrm{arcsinh}(x) + C\] \[\int \dfrac{\mathrm{d} x}{\sqrt{x^2 + c}} = \mathrm{arccosh}(x) + C\]