Investigating the Speed and Security of
Cryptographic Key Based Hashing Algorithms

How effective in terms of speed and security is the
AES-CBC-256 encryption algorithm when compared to the
RSA-4096 encryption algorithm?

A Computer Science Extended Essay

Word Count: 3945

Finn Lestrange

August 2021

Contents

1 Introduction i
2 Background Information iii
2.1 256-bit Hashing Algorithms vs. 4096 bit Key Based Algorithms . . . iii
22 AES . iv
2.2.1 Typical Use Cases v

2.2.2 Mathematical Algorithm v

2.3 RSA . . e X
2.3.1 Typical Use Cases X

2.3.2 Mathematical Algorithm xi

3 Experiment Methodology XV
3.1 Dependant Variables 0. XV
3.1.1 Time XV

3.2 Controlled Variables xXvi
3.3 Experimental Procedure (AES-CBC-256) xvi
3.4 Experimental Procedure (RSA-4096) xvi

4 Experiment Results xviii
4.1 Tabular Data Presentation xviii
4.2 Graphical Data Presentation XX
4.3 Data Analysis XXiV
4.3.1 Analyzing Key Generation Times XX1V

4.3.2 Analyzing Encryption Times XXV

4.3.3 Analyzing Decryption Times XXV

5 Conclusions xxvii
References XXix
6 Appendix XXXi
6.1 Source Code XXXi
6.2 Raw Data xlv

Abstract

The following research paper investigates the speed and security of the two most
popular symmetric and asymmetric encryption algorithms, AES and RSA respec-
tively. The paper provides some background information and explains the mathe-
matics required to understand how these encryption algorithms work, discussing the
AES Cipher Block Chaining Mode and RSA 4096. The algorithm testing carried
out was done using the Oracle Java programming language and for each encryption
algorithm there was a separate class that contained a key generation, encryption
and decryption methods making use of the Java system time method to count how
long each of these cryptographic operations for each of the separate algorithms took.
These programs were run on different sizes of pseudo random integer and character
input data and the results were collected for key generation and both the encryp-
tion and decryption speed per set of input data. The major findings of this paper
are as follows; AES is a more versatile encryption algorithm with a much wider
range of use cases due to the rapid encryption and decryption times provided by the
robust symmetrical algorithm. Whereas RSA is better suited to encrypting small
amounts of data for digital communications, due to the very secure keys but huge
key generation times and un-crackable ciphertext. The most notable data collected
is as follows; key generation times, AES ~ 0.205 ms, RSA ~ 1386 ms, resulting
in a 6762x increase in key generation time from AES to RSA. Thus, highlighting
why RSA is better suited to non-time critical messaging and why AES is preferred
for fast-access digital encryption, e.g. web technologies and confidential document

storage.

1. Introduction

Cryptographic hashing algorithms are computer programs or pieces of code that can
create a key that encrypts data such that the key has to be used to decrypt and read
the data again. They can be found in almost all applications of digital technology,
from mobile phones, to ATMs, email providers etc. as they are intended to allow
data to be stored in such a way that only valid users are meant to be able to have

acCCess.

There are a large number of hashing algorithms out there ranging from extremely
complicated and highly secure, to fast and efficient algorithms designed with speed
over security, thus the choice of algorithm can be difficult when designing a product

or solution that requires data to be encrypted.

This paper will investigate two cryptographic hashing algorithms RSA-4096 & AES-
CBC-256 and how different sample sizes of pseudo-random data affects both the
speed of encryption and the speed of decryption. This paper will also provide ex-
planations of the mathematics behind how these hashing algorithms work and will
derive some typical and reasonable use cases for each of the algorithms based on

their performance in the tests.

This research could be useful to programmers who are trying to decide the right
hashing algorithm when designing a program, and for security researchers or com-
panies that want to compare which algorithm is right for their intended use case.
Hashing algorithms are used all the time and thus the vast number of them can
make it confusing as to which ones may be best suited to the largest number of
general tasks, thus this is the reason why I have chosen both a symmetric and an

asymmetric algorithm to compare.

CHAPTER 1. INTRODUCTION i

To compare these algorithms, two programs will be written and run in real time,
one that preforms AES encryption and decryption and another that performs RSA
encryption and decryption and they will be tested on different sizes of pseudo ran-
dom integers and ascii characters. The time for encryption and decryption will be
recorded for each run using Java’s built in System timer, System. currentTimeMillis(),
and then the times for the increasing sizes of data for both operations can be stored
and analysed. This approach is also heavily dependant on the users hardware and
as such the results obtained here may not accurately reflect results that may be

obtained using the same methods.

2. Background Information

2.1 256-bit Hashing Algorithms vs. 4096 bit Key

Based Algorithms

A hashing algorithm is "mathematical algorithm (or function) that maps data of
arbitrary size to a hash of a fixed size” [1]. In essense, all hashing algorithms take
some input data and perform a mathematical operation on the bytes of the data
such that the output of the algorithm can only be read using the key that was
used to encrypt the data. This key based system is the backbone for both the AES
(Advanced Encryption Standard) hashing algorithm and the RSA (Rivest, Shamir,
Adleman) hashing algorithm. Both algorithms utilise key based systems used for
encryption and decryption of data. However the distinct difference between the two
algorithms is that AES uses a single 256-bit key for both encryption and decryption,
called symmetric encryption, whereas RSA uses a two key system, one for encryp-
tion, called the public key and one for decryption called the private key, aptly named
asymmetric encryption. [2] The size of the keys used are also vastly different, as
AES can use 128, 192 or 256 bit keys and RSA can use 512, 1024, 2048, 3072 and
4096 bit keys.

Although they are both key based systems, it makes a good comparison as both of
these encryption algorithms essentially do the same thing; encrypt data using keys,
but these algorithms take very different approaches in terms of their cryptography

behind manipulating data to be encrypted or decrypted.

il

2.2. AES iv

2.2 AES

The Advanced Encryption Standard is "a data encryption standard endorsed by
the U.S. National Institute of Standards and Technology (NIST) as a replacement
for aging and weak Data Encryption Standard (DES); adopted by the NIST in the
late 1970s. The Advanced Encryption Standard offers far greater security than DES
for communications and commercial transactions over the Internet.”[3]. AES was
invented by two Belgian computer scientists, Joan Daemen and Vincent Rijmen and
was introduced in the year 2000 after the NIST put out a request for people to
create a new encryption standard. AES was selected by the NIST and has since
been accepted as the new standard for data encryption for the United States Gov-
ernment. This is due to the flexibility of the algorithm having varying key lengths
and that the mathematical algorithm behind AES is able to utilise newer, more
modern computer architecture. Additionally, AES is less computationally intensive
than its predecessor DES, thus making it both a sensible and suitable choice as the

new encryption standard [3].

As AES was the new standard for encrypting digital communications, naturally it
was picked apart by the crypto-security community and the initial implementation
of AES encryption, called ECB mode or Electronic Code Book had a few flaws.
Mainly that the cipher did not incorporate any randomness after the key had been
generated, thus if the same key was used on the same input data, it would always
produce the same output, also known as the ciphertext. This meant that more
modes of AES encryption were developed and the one that was adopted the fastest
was a mode of encryption called Cipher Block Chaining Mode or CBC for short.
This mode made use of a cryptographic technology that had been patented in 1977
by four engineers, William F. Ehrsam, Carl H. W. Meyer, John L. Smith and Walter

L. Tuchman [4]. This cipher mode used ”successive cycles of operation during each

2.2. AES A\

of which an input block of clear data bits is ciphered under control of an input
set of cipher key bits to generate an output block of ciphered data bits” [4]. This
cipher also made use of a chaining mode; hence the named Cipher Block Chaining,
as for each new piece of data to be encrypted is uses part of the previous data that
was encrypted, thus individual blocks of data cannot be decrypted, which was one
of the main weaknesses with the initial AES implementation. Due to it’s robust
nature, the AES-CBC algorithm has been adopted as the go-to AES method for
fast encryption and decryption, and it is the algorithm that will be used throughout

the rest of this paper.

2.2.1 Typical Use Cases

Although the AES encryption standard was created for use by the U.S National
Institute of Standards and Technology (NIST) it is now one of the most widely used
cryptographic standard for the encryption and decryption of data. AES and it’s
subsidiary encryption modes (CBC, CFB etc.) are used in internet communications
and data transmission due to its speed and relative security [2]. As AES is a sym-
metric encryption cipher, it is much better at storing large amounts of data for long
periods of time, this is one of the main reasons why it has become so popular and
why the NIST was so quick to adopt it as their preferred method for securing digital

information.

2.2.2 Mathematical Algorithm

The mathematics explained in this section will be relating to the Cipher Block
Chaining implementation of the AES cipher. Something else to note is that due to
the nature of AES and how it is built upon so many other pieces of cryptography,
this will have to be a very simplified version of the mathematics behind how it works,

both to keep it relevant and to ensure that the rest of this paper can be understood

2.2. AES vi

without confusion.

Overall, AES uses a fairly robust algorithm that is based on many other algorithms,
and as such it is more of a culmination of many mathematical and cryptographic
functions that all work together to make AES work. This is where AES is very
unlike RSA, as RSA relies mostly on mathematical concepts. However, like the
RSA algorithm that will be explained in this paper later on, AES uses padding to
ensure that the data being encrypted is all the same size, this means that encrypted

data is usually larger than the original, un-encrypted data.

Key & IV Generation

Both the key and IV generation processes are quite simple. As the same key is used
for both the encryption a decryption operations, the can can be any secure random
number that is of the specified key length, typically 128 or 256 bits in length. The
Initialization Vector (IV) used in AES is what is called a cryptographic nonce,
meaning that it is a securely random number that is only used in one cryptographic
operation. The IV is generated by filling a 12 byte array with a cryptographically
secure random number or CRNG for short. The key is generated in much the same
way, an empty byte array is initialized of the specified key size, then it is filled using
the CRNG.

Encryption

Once the key and IV have been generated they can be used to encrypt data. This

process has six steps:
1. Key Expansion
2. Data Mixing

3. Substitution

2.2. AES vii

4. Shifting of Rows
5. Shifting of Columns
6. Repetition of Rounds

AES encryption is done using a process called rounds, and depending on the key
size, the number of rounds varies, for example, a 128 bit key means that there will

be 10 rounds and a 256 bit key uses 14 rounds [5].

The first step to take place is the key expansion, where by the AES key is used
to create a new set of cryptographic keys called round keys, with a new one being
generated for each round. This is done using the original AES key and a very com-
plex algorithm called Rijndael’s key schedule algorithm [5]. This algorithm takes
the AES key and performs various mathematical operations on it to produce smaller

keys that can be used for each round of encryption.

After the round key has been generated, the data that we want to encrypt is used in
the XOR bitwise operation with the current round key and the Initialization Vector,
not shown in diagram. This combines the round key and the plaintext data where
it is then stored in a matrix. The following diagram illustrates this process, where

the @ signifies the XOR operation.

2.2. AES viii

bo,o b(],l bo,2 b0,3
PddRoundKe
WEACWER

>

Figure 2.1: Bitwise operation with addition of round key to plaintext input, [5]

The data is then used in an algorithm called a substitution permutation network,
that uses substitution bytes and a very complex mathematical algorithm to essen-
tially mix up the data in a specified way. Again, below is a very simplified diagram

of the process.

%0/ 1| %2 %3 by
%o| 24 22 E b, ,
a3,0 a3,1 a3,2\\,3 ba.o

N

Figure 2.2: Substitution permutation network, [5]

As the data is arranged in a matrix, we can treat it almost like you would with a
spreadsheet, by manipulating the rows and columns. This starts by shifting every 8

bits that makes up the 128 or 256 block to the right by one place.

2.2. AES ix

Ne

change aD,O aO,l aO,Z a0,3 aU.O ao,l a0,2 a0,3
- - a,la ShiftRowd a,,|a a a,
Shjft 1
i 1.;1 /1,;_/ i/1.3 > 112 sl <h 0
Shift 2 %ol % /az,z f2,3 2| B3] 0| A1
R
Shit3| 30(851|332 93,3 d33| 30| 31| %2
o

Figure 2.3: Shifting rows 1 byte to the right, [5]

Finally, the columns of data in the matrix can be shuffled, illustrated in the diagram

below, where ¢ (x) denotes the algorithm that shuffles the columns.

1, |

1 a0,1 bo,l
aO, 0,2 aO,B bO,C—I)O,Z b0,3
NN U b By, b .| b
1,0 1,2 1,3 1,4 1,2 1,3
— >
az,c a2,1 32_2 az,s bz,c bZ,l 32,2 b2,3
I ry
3y aa\ B, 855 ba,c/g! D, o[B 5
I 1 - 1 1
» / ’
o

Figure 2.4: Mixing the columns, [5]

This process is then repeated for the number of rounds specified by the key size and
the output data from this is the ciphertext and is the encrypted version of the input

data we gave it.

Decryption

The decryption process is the reverse of all of the steps above, however one crucial
detail is that you need to find the inverse round keys and to do that you must have

the original AES key that was used to generate the original round keys.

2.3. RSA X

2.3 RSA

Ths Rivest, Shamir & Adleman Encryption Algorithm or RSA for short is a asym-
metrical (public and private key based) cryptographic hashing algorithm developed
by staff working at Massachusetts Institute of Technology, Ronald L. Rivest, Adi
Shamir, and Leonard M. Adleman. The very large key sizes utilized by the algorithm
and the complex mathematical structure behind it make it both useful for both peo-
ple and government agencies like the US National Security Agency who adopted
RSA for their communications [6]. The RSA algorithm was released in 1977 and
is now the most widely used asymmetrical encryption algorithm, as it allows in-
formation to be exchanged using a publicly known secret for users to encrypt data

with and a private secret that the receiver of information uses to decrypt the data [7].

In essence the RSA asymmetric encryption algorithm works by generating really
large numbers and then it checks if they are prime, when it finds the two large
prime numbers they are then used to create both the public and private keys [8].
However, there are many more steps in this process that will be explained in further

detail in Section 2.3.2.

2.3.1 Typical Use Cases

RSA encryption can be found on internet services such as Virtual Private Network
(VPN) providers networks, secure email services; like ProtonMail, and secure mes-
saging apps like Signal. RSA encryption is slowly making it’s way into out digital
lives even more are companies are realizing that it is a very effective way of keeping
user communications and data secure. By design the companies that hold user data
encrypted with RSA rely on the users remembering or keeping their private key.
Thus the only people that can read data encrypted using RSA are the people who

know both the public and the private key.

2.3. RSA xi

2.3.2 Mathematical Algorithm

The current implementation of RSA is heavily mathematical in nature, using mod-
ular arithmetic and mathematics of Euler, including The Totient Function, ¢(n) [9].
The following explanation of the mathematics behind RSA will be split up into 3

sections; Key Generation, Encryption of Plaintext and Decryption of Ciphertext.

Key Generation

As mentioned in Section 2.1, RSA is an asymmetrical encryption algorithm, thus
it makes use of two keys, one for data encryption and another for the decryption
of data. These keys are called the public and private keys respectively. The key
generation process is centered around the generation of 1024 — 4096 bit numbers

such that the product of two prime numbers is equal to that large number.

Public Key Generation

The first step in key generation is for the user, with the aid of a computer program
to choose two large prime numbers that meet the length requirements of the key
that they want to generate. For this explanation we will be using p % ¢ to denote

these primes.

Next, the user calculates the product of these prime numbers such that the prime
factors of this new number n and the two primes p & ¢ are the prime factors of this

number.

n=p-q (2.1)

This product n is then half of the public encryption key.

2.3. RSA xii

Next, the user calculates a number e, making use of Euler’s Totient Function ¢ (z)

such that e is relatively prime to n.

op(p-q)=@p—-1)(¢—1) (2.2)

This number e is then the other half of the public encryption key. Thus the private

key is the combination of (n, e)

Private Key Generation

The user now calculates d, the modular inverse of e.

d = e-mod ¢(n) (2.3)

Such that,

d-e=1-(mod ¢(n)) (2.4)
This means that d is the private key. Now the public key can be sent out for users
to encrypt data and the receiver then uses d to decrypt the data [9].
Encryption of Plaintext

Once the private key has been sent out, another user can then encrypt a message

using it. The following steps are used to perform this operation.

First a user converts their message into a number m, using the ASCII alphabet,

using either computer software or a chart like the one below [9].

2.3. RSA

|pec Hex Name Char Ctrl-char |Dec Hex Char |Dec Hex Char|Dec Hex Char
[o0 0 Hul MUL CTRL-® |32 20 Space |64 40 @ |96 60
1 1 Statofheadng SO0H CTRL-A 33 (21 | 65 41 A 97 |51 &
2 2 Startof test STH CTRL-B |34 22 66 42 B 98 62 b
3 3 End of text ETX CTRL-C N 23 ¥ 67 43 C P53 ¢
4 |4 End of xmit EOT CTRL-D |36 24 ¢ 58 44 D |00 64 d
BE 5 Enguiry ENQ CTRL-E SN 25 % B9 45 E 01 65 @
6 6 Acknowledge ACK CTRLF |38 26 & 70 4 F 102 65 f
77 Bel BEL CTRL-G |38 27 ° LN 47 G 10567 g
|8 B Backspace BS CTRL-H |40 28 72 48 H 104 68 h
L]] Horizontal tab HT CTRL-1 41 29) il B 105 89 |
10 0a& Line feed LF CTRL-) |42 28 * 74 aA] 06 64 |
11 0B ‘Wertica tab VT CTRL-K 3N 2B+ 75 4B K 107 6Bk
12 0C Form feed FF CTRLL |44 2C 76 4C L 108 6C |
13 0D Carriage feed CR CTRL-M |45 20 - 77 4D M 109 6D m
14 DE Shiftout §0 CTRL-N |46 2E . 78 4E N II0EE n
15 oF Shiftin 51 CTRL-O |47 2fF | 79 # 0 111 6F o
16 10 Dataline escape DLE CTRL-P 8. 30 0 80 S0 P 12 70 p
17 11 Devicecontral 1 DC1 CTRLQ |49 31 1 151 Q 113 71 q
18 12 Devicecontrol2 DC2 CTRL-R 800 32 2 B2 52 R 14 72 r
19 13 Devicecontrol 2 DC3 CTRL-5 ST 33 3 B3 53 5 AR 72 3
20 14 Devicecontral 4 DC4 CTRL-T 52 34 4 B4 =4 T 116 74 t
21 15 MNegaknowledge MaK CTRL-U |53 35 5 BS 5 U 117 75 u
22 16 Synchronousidle SYN CTRL-V |54 36 & BG S8 v 18 & v
23 (17 End of xmitblok ETE CTRL-W |55 37 7 B w a7 w
24 13 Cancel CoM CTRL-X |56 38 & g8 S8 X 1200 78
25 19 End of medum EM CTRL-¥ |52 039 9 Bo 59 ¥ 2Ly
26 14 Substitute SUB CTRL-Z (58 3a o0 sa 2 1220 7a 2
27 18 Escape ESC CTRL-[[S30M3e ; 81 se | 123 78 {
28 1C File separator F& CTRL-Y N C < g2 5C 124 7C |
28 1D Groupseparator G5 CTRL-] 61 30 = g3 sp] 125 70}
30 1E Recordseparator RS CTRL-" 620 3E > 94 SE 126\ /E ~
31 | IF Unit separator Us CTRL- 83 13F 7 95 <F 127 7F _ DEL

Figure 2.5: ASCII Chart [10]

xiil

The users message, in ASCII form, is then raised to the power e (the second half

of the public key), and then multiplied by the modulo of the first half of the public

key, n.

c=m°- (mod n)

(2.5)

Where c is the ciphertext that is then sent to the person who has the private key to

decrypt the message.

Decryption of Ciphertext

Once the owner of the private key has received the ciphertext ¢, they use Euler’s

Theorem to retrieve the original message in ASCII form. As Euler’s Theorem states:

m?™ = 1. mod (n)

(2.6)

2.3. RSA xiv

we need the integer d that is the private key because d satisfies the relationship:

d-e=1-(mod ¢(n)) (2.7)

Thus with the knowledge of d the user can apply the mathematical relationships
in Fquations 2.6 & 2.7 to discover the message integer m. Which can finally be

converted from ascii into the original message from the sender. [9]

3. Experiment Methodology

The process of experimentation for testing the speed of these two algorithms is quite
simple, there will be 10 trials where each algorithm will have to encrypt pseudo-
random ASCII characters. As each trial goes on, 50 more characters will be added
to the plaintext input data. The first trial will start with 50 characters and each set
of characters will be the same for each algorithm. The time taken to generate the
key, encrypt the data and the time taken to decrypt the data will be stored in a csv

file to later be used for data analysis.

Please Note: The results derived from this experiment may vary from results
obtained using the same or a similar process on your own computer, this is due to
the specifications of said device as this has an effect on the speed that data can be

encrypted and decrypted.

3.1 Dependant Variables

3.1.1 Time

To gather data for this experiment, the time taken for the key generation, and en-
cryption / decryption of various sizes of pseudo random character and integer data

sets will be recorded and used in the data analysis Section 4.3.

The time will be recorded using the Java built in system timer, System. currentTimeMillis ()

and the results will be saved to a csv file.

XV

3.2. CONTROLLED VARIABLES xvi

3.2 Controlled Variables

e Pseudo-Random Data Sets — As this experiment will involve the comparison
of two encryption algorithms, we must ensure that the data being used is the

same between the two algorithms.

e Computational Power — As encryption and decryption speeds vary based
on computer hardware, all of the tests will be run on the exact same desktop

workstation using an Intel® Core i7 5930K.

3.3 Experimental Procedure (AES-CBC-256)

To test the performance of the AES-CBC-256 encryption algorithm, a class was

written that contained the following methods:

e ivGen — used to generate an Initialization Vector to be used for the encryp-

tion and decryption of plaintext
e keyGen — used to generate an AES-256 bit key
e encrypt — that takes a parameter of String plaintext to be encrypted

e decrypt — that takes a parameter of String ciphertext to be decrypted

3.4 Experimental Procedure (RSA-4096)

To test the RSA-4096 cryptographic algorithm, a class was also written containing

the following methods:
e keyGen — used to generate an RSA-2048 keyPair Object
e encrypt — that takes a parameter of String plaintext to be encrypted

e decrypt — that takes a parameter of String ciphertext to be decrypted

3.4. EXPERIMENTAL PROCEDURE (RSA-4096) xvii

Finally, there is a parent class that has access to the methods from both the AES

and RSA classes and that automates the testing and the data collection.

4. Experiment Results

4.1 Tabular Data Presentation

Listed below are tables of the averages for the key generation, encryption and de-

cryption times in milliseconds for both the AES and RSA algorithms.

AES - Key Generation Times

Input Data Size (Characters)

50 | 100 | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 500

Average Time
2 0 0 0 0 0 0 0] 0.05 0

(Milliseconds)

Figure 4.1: AES Key Generation Times (Averages)

AES - Encryption Times

Input Data Size (Characters)

50 | 100 | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 500

Average Time
0.25 | 0.05 01005 02(0.15] 0.1 0.1 00.15

(Milliseconds)

Figure 4.2: AES Encryption Times (Averages)

XViil

4.1.

TABULAR DATA PRESENTATION

XX

AES - Decryption Times

Input Data Size (Characters)

50 | 100 | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 500
Average Time
0.1 0.05/015{0.15| 010.05| 0.1]0.15|0.05| 0.1
(Milliseconds)
Figure 4.3: AES Decryption Times (Averages)
RSA - Key Generation Times
Input Data Size (Characters)
50 100 150 200 250
Average Time
1392 | 1532.25 | 1509.85 | 1422.2 | 1069.65
(Milliseconds)
RSA - Key Generation Times
Input Data Size (Characters)
300 350 400 450 500
Average Time
1539.35 | 1433.65 | 1074.7 | 1223.6 | 1664.7
(Milliseconds)

Figure 4.4: RSA Key Generation Times (Average)

4.2. GRAPHICAL DATA PRESENTATION XX
RSA - Encryption Times
Input Data Size (Characters)
50 | 100 | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 500
Average Time
025 04 02]035] 03[045] 02| 05| 03] 0.2
(Milliseconds)
Figure 4.5: RSA Encryption Times (Averages)
RSA - Decryption Times
Input Data Size (Characters)
50 | 100 | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 500
Average Time
10.05 | 11.25 | 11.05 | 9.85 | 10.2 | 10.3 | 9.5 | 10.15 | 11.2 | 9.65
(Milliseconds)

Figure 4.6: RSA Decryption Times (Averages)

4.2 Graphical Data Presentation

Please Note: The following graphs are for the individual results as aggregating

the results for each category for each algorithm into one graph would not be

possible due to the orders of magnitude difference for some of the results.

4.2.

GRAPHICAL DATA PRESENTATION

AES - Key Generation Times (Average) vs. Input Data Size

2.0
=
=
=
2 15
o
=
E
£ 10
£
=
=
&
= 05
k]
]
i
e

100 200 300 400 500

Input Data Size (Characters)

Figure 4.7: AES Key Generation Time vs. Input Data Size

AES - Encryption Time (Average) vs. Input Data Size

0.25
w020
=]
=
(=]
b
2 015
=
£
E 010
=
=
|
S 005
=
(1N

0.00

100 200 300 400 500

Input Data Size (Characters)

Figure 4.8: AES Encryption Time vs. Input Data Size

4.2.

GRAPHICAL DATA PRESENTATION

AES - Decryption Time (Average) vs. Input Data Size

0.15
@
=
| =y
(=]
S 010
i
E
i)
E
'_
S 005
8
fa
]
]
0.00

100 200 300 400 500

Input Data Size (Characters)

Figure 4.9: AES Decryption Time vs. Input Data Size

RSA - Key Generation Time (Average) vs. Input Data Size

2000
w
=
=
S 1500
o
=
E
£ 1000
E
=
=
®
& 500
k]
4]
i
e

100 200 300 400 500

Input Data Size (Characters)

Figure 4.10: RSA Key Generation Time vs. Input Data Size

4.2. GRAPHICAL DATA PRESENTATION xxiii

RSA - Encryption Time (Average) vs. Input Data Size

0.5
w04
=
| =
[=]

]
£ 03
s
E
= 0.2
|
=
E
= 01
| =
i
0.0

100 200 300 400 500

Input Data Size (Characters)

Figure 4.11: RSA Encryption Time vs. Input Data Size

RSA - Decryption Time (Average) vs. Input Data Size

12

mw

Decryption Time (Milliseconds)

100 200 300 400 500

Input Data Size (Characters)

Figure 4.12: RSA Decryption Time vs. Input Data Size

4.3. DATA ANALYSIS xXXiv

4.3 Data Analysis

The following section will explain the trends and patterns in the data. We will ana-
lyze and compare the key generation times, encryption times and decryption times

for the results gathered from the AES and RSA data.

4.3.1 Analyzing Key Generation Times

From tables /.1 and 4.4 it can be observed that clearly the key generation process
for RSA-4096 is exponentially higher than AES-256, with the average key generation
time being less than a millisecond whereas if we average the key generation times

for RSA, that comes out at:

AES KeyGen Average = 0.205 ms (4.1)

RSA KeyGen Average = 1386.195 ~ 1386 ms (4.2)

This also means that the average RSA key generation time takes ~ 6762 times longer

to generate a set of keys than AES takes to generate it’s respective key.

1386.195

~ 6762 4.3
0.205 (4:3)

This is the first of many indications as to the ideal use case for RSA.

Another observation to note is that there are a few anomalous results, namely the

average key generation time for AES when generating a key for the 50 & 450 char-

4.3. DATA ANALYSIS XXV

acter data sets. This small rise in the time taken could have been caused by a lack
of system entropy or another process on the computer using the systems secure en-
tropy source. This in terms of AES doesn’t have a significant effect on the time as a
maximum key generation time of 2 ms is almost a negligible difference in the grand

scheme of things.

Something else of note is that for the AES key generation times, the first run usually
takes longer to generate, this could be caused again by the systems secure entropy

source being used by another process or that it needs to be initialized.

In terms of RSA, the key generation times seem entirely random, and they are also
very high when compared to AES. However, this fits with what we know about the
RSA Mathematical Algorithm and how the RSA keys are generated as the process
is very computationally intensive. Thus far the data collected supports what we

know about the two algorithms.

4.3.2 Analyzing Encryption Times

When we observe the data for the encryption times, the times for the two algorithms
are at least in the same order of magnitude, unlike the times for key generation, with
all of the encryption times under 1 ms. For both cryptographic algorithms the times
for data encryption seem to be entirely unrelated to the size of the input data set,
this can be observed in Graphs 4.8 and 4.11. As we can only speculate about why
this happens, I would suggest that these seemingly uncorrelated results could be

due to the algorithms having to add padding to the plaintext input data.

4.3.3 Analyzing Decryption Times

When observing that data for decryption times, it can be noted that the decryp-

tion times for the AES algorithm is a single order of magnitude smaller than the

4.3. DATA ANALYSIS XXVi

decryption times for RSA, with the following averages being calculated:

AES Decryption Time Average = 0.1 ms (4.4)

RSA Decryption Time Average = 10.32 ms (4.5)

Here we see another case where the RSA algorithm is performing as we would expect
as the decryption process for RSA is more computationally intensive when compared

to the process the AES uses to decrypt data.

5. Conclusions

When drawing conclusions from this data and from what has been discussed about
how these two cryptographic algorithms work, something that needs to be kept in
mind is that AES is a symmetric encryption algorithm and RSA is an asymmetric
algorithm. This means that by design RSA is meant to be more secure and the fact
that is had to generate two keys that are 16 times larger than the single key that
AES has to generate. This also means that the data collected fits exactly with what
is known about the RSA algorithm and as such it can be said with confidence that
the data collected is valid and accurate as the testing was completely automated and
and had no human interaction. The code was also written in a robust and versatile
programming language, Java in this case, and this helps to eliminate that any issues

with the language that could have affected the outcome of the tests.

Something of note from both the research and the experiment is that the choice of
using RSA to compare to AES may not have been the best comparison in terms of
determining which of the two are better. This is because the two algorithms are
entirely different in their approach and thus it makes them challenging to compare.
However, the results of this investigation do demonstrate to us that both of the

algorithms do have use cases that they are best suited to.

From the data analyzed we can see that the RSA algorithm is best suited to sending
digital communications and small messages, that are not time and space critical
due to the high time and space complexity. The data also shows us that the AES
algorithm is much more versatile and is best suited for storing large amounts of data

as the time for key generation, decryption and encryption is small in comparison to

the RSA algorithm.

XXVil

CHAPTER 5. CONCLUSIONS xxViii

This research paper will hopefully prove useful to developers in helping to guide
them in choosing a symmetric or asymmetric encryption algorithm for the storage
and transmission of data, this ultimately will help to make future applications and

our digital information more secure.

References

[1] J. Code, Hashing algorithms — jscrambler blog, Jscrambler. [Online]. Avail-
able: https://blog. jscrambler . com/hashing-algorithms (visited on

07/26/2021).

[2] A. M. Abdullah, Advanced encryption standard (aes) algorithm to encrypt
and decrypt data, ResearchGate, Jun. 2017. [Online]. Available: https: //
www . researchgate .net/publication/317615794_Advanced_Encryption_
Standard _ AES _Algorithm _to _Encrypt_and _Decrypt _Data (visited on
08/07/2021).

[3] G. J. Simmons, AES — cryptology — Britannica. 2020. [Online]. Available:

https://www.britannica.com/topic/AES.

[4] W. F. Ehrsam, C. H. W. Meyer, J. L. Smith, and W. L. Tuchman, Mes-
sage verification and transmission error detection by block chaining, Google
Patents, 1977. [Online]. Available: https://patents.google.com/patent/

US4074066A/en (visited on 08/22/2021).

[5] D. Crawford, A complete guide to aes encryption (128-bit and 256-bit) - propri-
vacy.com, ProPrivacy.com, Feb. 2019. [Online]. Available: https://proprivacy.

com/guides/aes-encryption.

6] G. J. Simmons, RSA encryption — Britannica. 2020. [Online]. Available:

https://www.britannica.com/topic/RSA-encryption.

[7] Rsa cryptography: History and uses — telsy, Telsy, May 2021. [Online]. Avail-
able: https://www.telsy.com/rsa-cryptography-history-and-uses/

(visited on 08/16/2021).

[8] P. Fox, Public key encryption (article), Khan Academy. [Online|. Available:

https://www.khanacademy . org/computing/computers-and-internet/

XXIX

https://blog.jscrambler.com/hashing-algorithms
https://www.researchgate.net/publication/317615794_Advanced_Encryption_Standard_AES_Algorithm_to_Encrypt_and_Decrypt_Data
https://www.researchgate.net/publication/317615794_Advanced_Encryption_Standard_AES_Algorithm_to_Encrypt_and_Decrypt_Data
https://www.researchgate.net/publication/317615794_Advanced_Encryption_Standard_AES_Algorithm_to_Encrypt_and_Decrypt_Data
https://www.britannica.com/topic/AES
https://patents.google.com/patent/US4074066A/en
https://patents.google.com/patent/US4074066A/en
https://proprivacy.com/guides/aes-encryption
https://proprivacy.com/guides/aes-encryption
https://www.britannica.com/topic/RSA-encryption
https://www.telsy.com/rsa-cryptography-history-and-uses/
https://www.khanacademy.org/computing/computers-and-internet/xcae6f4a7ff015e7d:online-data-security/xcae6f4a7ff015e7d:data-encryption-techniques/a/public-key-encryption
https://www.khanacademy.org/computing/computers-and-internet/xcae6f4a7ff015e7d:online-data-security/xcae6f4a7ff015e7d:data-encryption-techniques/a/public-key-encryption

REFERENCES XXX

xcae6f4a7ff015e7d : online-data-security/xcae6f4a7ff015e7d : data-

encryption-techniques/a/public-key-encryption.

A. Katz, A. Ng, and P. Bourg, Rsa encryption — brilliant math and science
wiki, Brilliant.org, 2010. [Online]. Available: https://brilliant.org/wiki/

rsa-encryption/.

commfront, Ascii chart, CommFront. [Online]. Available: https : / /www .

commfront.com/pages/ascii-chart (visited on 08/22/2021).

https://www.khanacademy.org/computing/computers-and-internet/xcae6f4a7ff015e7d:online-data-security/xcae6f4a7ff015e7d:data-encryption-techniques/a/public-key-encryption
https://www.khanacademy.org/computing/computers-and-internet/xcae6f4a7ff015e7d:online-data-security/xcae6f4a7ff015e7d:data-encryption-techniques/a/public-key-encryption
https://www.khanacademy.org/computing/computers-and-internet/xcae6f4a7ff015e7d:online-data-security/xcae6f4a7ff015e7d:data-encryption-techniques/a/public-key-encryption
https://www.khanacademy.org/computing/computers-and-internet/xcae6f4a7ff015e7d:online-data-security/xcae6f4a7ff015e7d:data-encryption-techniques/a/public-key-encryption
https://brilliant.org/wiki/rsa-encryption/
https://brilliant.org/wiki/rsa-encryption/
https://www.commfront.com/pages/ascii-chart
https://www.commfront.com/pages/ascii-chart

6. Appendix

6.1 Source Code

Below is the Java 16 source code that was used with the experiment with the ex-

perimental procedures to collect the raw data.

// Finn Lestrange — 27/08 — Extended Essay Code —> Main Class File

// Imports

import javax.crypto.sx;

import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.SecretKeySpec;
import java.io.x;

import java.nio.charset.StandardCharsets;
import java.security .x;

import java.util.Base64;

import java.util.LinkedList;

import java.util.Locale;

import java.util.Random;
public class Algorithms {

// LinkedLists to store the times taken for the various stages of
the algorithms

protected static LinkedList<Long> encTimeAES = new LinkedList <>();

protected static LinkedList<Long> decTimeAES = new LinkedList <>();

protected static LinkedList<Long> keyTimeAES = new LinkedList <>();

protected static LinkedList<Boolean> validAES = new LinkedList <>();

protected static LinkedList<Long> encTimeRSA = new LinkedList <>();

XXX1

6.1. SOURCE CODE xxxil

protected static LinkedList<Long> decTimeRSA = new LinkedList <>();
protected static LinkedList<Long> keyTimeRSA = new LinkedList <>();

protected static LinkedList<Boolean> validRSA = new LinkedList<>();

// LinkedList to store the randomly generated strings
protected static LinkedList<String> randomStrings = new LinkedList

<>();

// RSA Encryption and decryption class
static class RSA {

public static KeyPair keypair;

public static void keyGen() {

try {

// Creates a new instance of the keyGenerator class for
RSA
KeyPairGenerator keyPairGenerator = KeyPairGenerator.

getInstance ("RSA”) ;

// Initializes the keyGenerator with an RSA key of size
2048

keyPairGenerator.initialize (4096);

// Stores the keyPair in the global variable so that it
can be used by the other methods
keypair = keyPairGenerator. generateKeyPair () ;
} catch (NoSuchAlgorithmException e) {

e.printStackTrace () ;

public static String encrypt(String plaintext) {

6.1. SOURCE CODE xxxiil

String b64out = 77 ;
try {
// Initializes a new instance of the RSA cipher in
encrypt mode using the public key generated before
Cipher cipher = Cipher.getInstance (”"RSA”);
cipher.init (Cipher . ENCRYPTMODE, keypair.getPublic());

// Gets the UTF8 bytes of the plaintext to be
encrypted

byte[] plaintextBytes = plaintext.getBytes(
StandardCharsets . UTF.8) ;

// Generated the ciphertext from the plaintext

byte[] ciphertext = cipher.doFinal(plaintextBytes);

// Converts the encrypted bytes to a base64 string for
ease of use and storage
b64out = Base64.getEncoder().encodeToString (ciphertext)
} catch (NoSuchPaddingException | NoSuchAlgorithmException
| InvalidKeyException | IllegalBlockSizeException |
BadPaddingException e) {
e.printStackTrace () ;

}

return b64out; // returns the base64 encoded ciphertext

public static String decrypt(String ciphertext) {
String message = 77 ;
try {
// Initializes the cipher class for RSA decrypt mode
using the private key generated before

Cipher Cipher = Cipher-getlnstance("RSA”);
cipher . init (Cipher DECRYPTMODE, keypair. getPrivate());

6.1. SOURCE CODE XXXV

// Decodes the base64 ciphertext into a byte array
byte [] cipherTextNoB64 = Base64.getDecoder () .decode(

ciphertext);

// Decrypts the ciphertext into a byte array

byte [] messageBytes = cipher.doFinal(cipherTextNoB64);

// Converts the decrypted byte array into a human
readable String
message = new String (messageBytes);

} catch (NoSuchPaddingException | IllegalBlockSizeException
| NoSuchAlgorithmException | BadPaddingException |
InvalidKeyException e) {
e.printStackTrace () ;

}

return message; // returns the decrypted ciphertext

// AES Encryption and decryption class
static class AES {

public static IvParameterSpec ivSpecG;

public static SecretKeySpec keySpecG;

// AES Key generating method

public static void keyGen() throws NoSuchAlgorithmException {

// Create a new key generator for AES

KeyGenerator keyGenerator = KeyGenerator. getInstance (7AES”)

)

6.1. SOURCE CODE XXXV

keyGenerator.init (256); // Initializes the keyGenerator
with a 256 bit key
SecretKey sKey = keyGenerator.generateKey (); // Generates

the key

// Creates a new secretkey for the AES algorithm

// This method converts a generic 256 bit key to a 256 bit
aes key

// saves the key to the global variable so that it can be
used in the decryption method without

// having to worry about saving to files and reading from
files —> adds unnecessary complications

keySpecG = new SecretKeySpec (sKey.getEncoded (), "AES”);

// Initialization Vector generating method
public static void ivGen() {
SecureRandom secureRandom = new SecureRandom () ;
// Creates a new instance of secure random that uses the

systems source of entropy to generate random numbers

byte[] iv = new byte[16]; // Creates a new 16 byte iv —>
standard iv size for aes

secureRandom . nextBytes (iv); // fills the 16 bytes of the iv
with a secureRandom number

// Creates a new ivSpecification to be used with the

// cipher class in the encryption and decryption methods

ivSpecG = new IvParameterSpec(iv); // Saves the iv Spec to
the global variable so that it can be used for both

operations

public static String encrypt(String data)

6.1. SOURCE CODE XXXVI

throws NoSuchAlgorithmException, NoSuchPaddingException

)

InvalidAlgorithmParameterException , InvalidKeyException

)

IllegalBlockSizeException , BadPaddingException {

IvParameterSpec ivSpec = ivSpecG; // Generates the IV using
the method above
SecretKeySpec sKeySpec = keySpecG; // Generates the key

using the method above

// Creates a new instance of the cipher class to be used to
encrypt the data using the AES cbc standard

Cipher cipher = Cipher.getInstance (”AES/CBC/PKCS5PADDING”) ;

cipher.init (Cipher .ENCRYPTMODE, sKeySpec, ivSpec); //
Initializes the cipher with the required mode, key and

iv

byte[] encData = cipher.doFinal(data.getBytes(
StandardCharsets . UTF8)); // Encrypts the data with the
cipher
return Base64.getEncoder () .encodeToString (encData); //

Returns the encrypted string in base64

public static String decrypt(String data)
throws NoSuchPaddingException, NoSuchAlgorithmException
, InvalidAlgorithmParameterException ,

InvalidKeyException , IllegalBlockSizeException ,

BadPaddingException {

// Does the exact same thing in reverse to the encrypt

method

Cipher cipher = Cipher.getInstance (”AES/CBC/PKCS5PADDING”) ;

SOURCE CODE xxxvil

cipher.init (Cipher .DECRYPTMODE, keySpecG, ivSpecG); //
This time we set the mode to DECRYPT

byte [] decoded = cipher.doFinal (Base64.getDecoder () .decode(
data)); // Decrypts the data from base 64 and then

// from the aes encrypted ciphertext back into a string

return new String(decoded); // returns a string of the

decoded aes ciphertext

// AES Testing method
public static void testAES() {
System.out.println (” Testing LAES_. 7Y
// Creates a new instance of the AES class
AES aes = new AES();
for (int 1 = 0; i < 10; i++) {
System.out.println ("Pass.” + (i + 1) + 7:_Running....._. ")
try {
// Generates the iv used for the AES encryption

aes.ivGen () ;

// Times the key generation for the AES algorithm
long s = System.currentTimeMillis () ;
aes.keyGen() ;

long st = System.currentTimeMillis () ;

long t = st — s;

keyTimeAES.add (t);

// Times the encryption of the random plaintext String
s = System.currentTimeMillis () ;

String ciphertext = aes.encrypt(randomStrings.get(i));
st = System.currentTimeMillis () ;

t = st — s

encTimeAES.add (t);

6.1. SOURCE CODE xxxviii

// Times the decryption of the ciphertext
s = System.currentTimeMillis () ;

String message = aes.decrypt(ciphertext);
st = System.currentTimeMillis () ;

t = st — s

decTimeAES.add (t);

// Performs string verification check to ensure that
the input data matches the decrypted string

if (randomStrings.get(i).compareTo(message) =— 0) {
validAES . add (Boolean .TRUE) ;
System.out.println ("Pass.” + (i + 1) + 7:.

Successful!”);

}oelse {
validAES .add (Boolean .FALSE) ;
System.out.println (?Pass.” + (i + 1) + 7:_.Failed .—>

~Input._String_mismatch_with_decrypted._data!”);

} catch (NoSuchAlgorithmException |
InvalidAlgorithmParameterException |
NoSuchPaddingException | IllegalBlockSizeException |
BadPaddingException | InvalidKeyException e) {

e.printStackTrace () ;

// RSA Testing method
public static void testRSA () {

System.out.println (" Testing -RSA_._._. ")

6.1. SOURCE CODE XXXIX

// Creates a new instance of the RSA class

RSA rsa = new RSA();

for (int i = 0; i < 10; i++) {
System.out.println ("Pass.” + (i + 1) + 7:_Running....._. ")

try {

// Times the key generation for the AES algorithm
long s = System.currentTimeMillis () ;
rsa.keyGen() ;

long st = System.currentTimeMillis () ;

long t = st — s;

keyTimeRSA .add (t) ;

// Times the encryption of the random plaintext String
s = System.currentTimeMillis () ;

String ciphertext = rsa.encrypt(randomStrings.get(i));
st = System.currentTimeMillis () ;

t = st — s

encTimeRSA .add(t);

// Times the decryption of the ciphertext
s = System.currentTimeMillis () ;

String message = rsa.decrypt(ciphertext);
st = System.currentTimeMillis () ;

t = st — s;

decTimeRSA .add(t);

// Performs string verification check to ensure that
the input data matches the decrypted string
if (randomStrings.get(i).compareTo(message) = 0) {

validRSA . add (Boolean .TRUE) ;

6.1. SOURCE CODE xl

System.out.println (?Pass.” + (i + 1) + 7:.
Successful!”);
} else {
validAES .add (Boolean .FALSE) ;
System.out.println ("Pass.” + (i + 1) + 7:_Failed_.—>

JInput.String._mismatch_.with_.decrypted._data!”);

} catch (Exception e) {

e.printStackTrace () ;

// Plaintext String Generator of given integer length

public static String randomPlaintextGen(int length) {

String upper = "ABCDEFGHIJKLMNOPQRSTUVWXYZ” ;
String lower = upper.toLowerCase(Locale .ROOT) ;
String decimalDigits = 71234567890" ;

String acceptedChars = upper 4+ lower 4+ decimalDigits;

Random random = new Random () ;

StringBuilder out = new StringBuilder (length);
for (int 1 = 0; i < length; i++) {

out .append (acceptedChars.charAt (random. nextInt (

acceptedChars.length())));

return out.toString();

6.1. SOURCE CODE

// Generates and stores randomly generated plaintext strings
public static void fillRandomPlaintext () {
// Random strings generation
int length = 0;
for (int i = 0; i < 10; i++) {
length 4= 50;

randomStrings.add (randomPlaintextGen (length));

// Saves an output file with the statistics from testing the
algorithms

public static void summary() {

try {
writeLinkedListToFile ("keyTimeAES” , keyTimeAES) ;
writeLinkedListToFile (”encTimeAES” ; encTimeAES) ;
writeLinkedListToFile ("decTimeAES” , decTimeAES) ;
writeLinkedListToFile ("keyTimeRSA” , keyTimeRSA) ;
writeLinkedListToFile ("encTimeRSA” , encTimeRSA) ;
writeLinkedListToFile (”decTimeRSA” , decTimeRSA) ;
} catch (Exception e) {

e.printStackTrace () ;

public static void writeLinkedListToFile(String fileName,

LinkedList list) {

try {

xli

6.1. SOURCE CODE xlii

// https://stackoverflow.com/questions /24982744 /printwriter
—to—append—data—if—file —exist

File file = new File(”outputs/” + fileName + 7.txt”);

PrintWriter printWriter = null;

if (file.exists()) {
printWriter = new PrintWriter (new FileOutputStream (file

, true));

} else {
printWriter = new PrintWriter (file);

}

printWriter. println (list.toString());

printWriter . close () ;

} catch (Exception e) {

e.printStackTrace () ;

public static void runTests(int tests) {
for (int i = 0; i < tests; i++) {
// clears all the lists ready to run another test
it (i >0) {

randomStrings. clear () ;

keyTimeAES. clear () ;
encTimeAES. clear () ;
decTimeAES. clear () ;
validAES . clear () ;

keyTimeRSA . clear () ;
encTimeRSA . clear () ;
decTimeRSA . clear () ;
validRSA . clear () ;

6.1. SOURCE CODE

// Fills the plaintext array with the random strings

fillRandomPlaintext () ;

// Tests the AES algorithm

testAES () ;

// Tests the RSA algorithm

testRSA () ;

summary () ;

// print out description of what is in each output file

xliii

System.out.println (” Performance._Specifications _—>_milliseconds”

)

System .
System .
System .

System .

out .

out .

out .

out .

println
println
println

println

(
(
(
(

)

)

)
)

"Key_Generation _Times:._.”);
"Encryption._Times:.");
"Decryption_Times:.”);

"Valid _Encrypts &_Decrypts:.");

public static void main(String[] args) {

runTests (20) ;

6.1. SOURCE CODE xliv

6.2. RAW DATA xlv
6.2 Raw Data
AES Key Generation Times - Milliseconds
Data Set Size in Characters
Run Number | 50 | 100 | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 500
1139 0 0 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0
31 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
5/ 0 0 0 0 0 0 0 0 0 0
6 1 0 0 0 0 0 0 0 0 0
71 0 0 0 0 0 0 0 0 0 0
81 0 0 0 0 0 0 0 0 0 0
91 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0
117 0 0 0 0 0 0 0 0 0 0
121 0 0 0 0 0 0 0 0 0 0
13| 0 0 0 0 0 0 0 0 0 0
141 0 0 0 0 0 0 0 0 0 0
5] 0 0 0 0 0 0 0 0 0 0
16| 0 0 0 0 0 0 0 0 0 0
171 0 0 0 0 0 0 0 0 1 0
18] 0 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0
200 O 0 0 0 0 0 0 0 0 0

Figure 6.1: AES Key Generation Times Raw Data

6.2. RAW DATA xlvi
AES Encryption Times - Milliseconds
Data Set Size in Characters

Run Number | 50 | 100 | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 500
1] 3 0 0 0 0 1 0 0 0 1
210 0 0 0 1 1 0 1 0 0
31 0 0 0 0 1 0 0 0 0 0
41 0 0 0 0 0 0 0 0 0 0
5/ 0 0 0 0 1 0 0 1 0 0
6| 0 0 0 1 0 0 0 0 0 0
71 0 0 0 0 0 0 0 0 0 0
81 0 1 0 0 0 0 1 0 0 1
91 0 0 0 0 0 0 0 0 0 0
10| O 0 0 0 0 0 0 0 0 0
11 0 0 0 0 1 0 0 0 0 1
12| 0 0 0 0 0 0 0 0 0 0
13| 0 0 0 0 0 0 0 0 0 0
14| 1 0 0 0 0 0 0 0 0 0
15| 0 0 0 0 0 0 0 0 0 0
16| 0O 0 0 0 0 1 0 0 0 0
171 0 0 0 0 0 0 0 0 0 0
18| 0 0 0 0 0 0 0 0 0 0
19] 1 0 0 0 0 0 1 0 0 0
200 0O 0 0 0 0 0 0 0 0 0

Figure 6.2: AES Encryption Times Raw Data

6.2. RAW DATA xlvii
AES Decryption Times - Milliseconds
Data Set Size in Characters

Run Number | 50 | 100 | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 500
11 0 0 1 2 0 0 1 0 0 0
21 0 0 1 0 0 1 1 0 1 1
31 0 0 0 0 0 0 0 0 0 0
41 0 1 0 0 1 0 0 1 0 1
5/ 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0
71 0 0 0 0 0 0 0 0 0 0
81 0 0 0 0 1 0 0 0 0 0
91 0 0 0 1 0 0 0 0 0 0
10| O 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0
12| 0 0 0 0 0 0 0 0 0 0
13| 0 0 0 0 0 0 0 0 0 0
141 0 0 0 0 0 0 0 0 0 0
5] 1 0 0 0 0 0 0 1 0 0
16| 1 0 0 0 0 0 0 0 0 0
171 0 0 0 0 0 0 0 0 0 0
18| 0 0 0 0 0 0 0 1 0 0
19| 0 0 0 0 0 0 0 0 0 0
200 O 0 1 0 0 0 0 0 0 0

Figure 6.3: AES Decryption Times Raw Data

6.2. RAW DATA xlviii
RSA Key Generation Times - Milliseconds
Data Set Size in Characters
Foun 50 | 100 | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 500
Number

111332 | 1707 | 3728 | 1608 | 564 | 2383 | 1120 | 471 | 841 | 1186
21003 | 1864 | 943 | 1120 | 740 | 682 | 2639 | 554 | 1491 | 771
31088 | 889 | 797 | 1042 | 1443 | 554 | 1382 | 1285 | 1494 | 1167

4| 279 14820 | 2025 | 1288 | 704 | 926 | 789 | 869 | 325 | 2551

5| 1313 | 3761 | 637 | 2004 | 747 | 2772 | 1685 | 2457 | 690 | 1121

6| 1366 | 787 | 1373 | 1163 | 523 | 1026 | 1287 | 1460 | 1618 | 1119

7| 1483 | 1563 | 2900 | 2326 | 925 | 1082 | 1027 | 408 | 552 | 1386
812486 | 249 | 395 | 468 | 1687 | 400 | 2529 | 320 | 1003 | 3553

9| 754 | 1093 | 3628 | 2181 | 1056 | 469 | 1451 | 210 | 1921 | 1031

10 | 1157 | 992 | 1360 | 1347 | 1127 | 1691 | 2118 | 597 | 730 | 1477
111285 | 1613 | 894 | 438 | 1871 | 518 | 840 | 1464 | 2028 | 3637

12 | 2116 | 321 | 2737 | 2010 | 927 | 3299 | 1074 | 418 | 2243 | 725

13| 566 | 1666 | 816 | 2150 | 1651 | 2746 | 2782 | 1662 | 680 | 2306

14 | 2055 | 855 | 1694 | 243 | 319 | 460 | 1309 | 2438 | 244 | 738

15| 3027 | 672 | 1305 | 3459 | 1036 | 569 | 1077 | 1495 | 2650 | 585

16 | 199 | 1031 | 709 | 666 | 2444 | 1279 | 1292 | 1828 | 1129 | 460

17| 912 | 3204 | 2058 | 2567 | 613 | 2343 | 725 | 410 | 917 | 2109

18 | 2475 | 1438 | 1215 | 871 | 1317 | 2020 | 1693 | 673 | 1873 | 2106

19 | 1333 | 1684 | 447 | 848 | 774 | 3133 | 833 | 559 | 833 | 4479

20 | 1611 | 436 | 536 | 645 | 925 | 2435 | 1021 | 1916 | 1210 | 787

Figure 6.4: RSA Key Generation Times Raw Data

6.2. RAW DATA

RSA Encryption Times - Milliseconds
Data Set Size in Characters
Run
50 | 100 | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 500
Number

1] 1 1 0 1 1 1 0 1 0 1
21 0 1 0 0 0 1 1 1 0 0
31 0 0 0 1 0 1 0 0 0 0
41 1 1 0 0 0 1 0 1 1 1
51 1 1 0 0 0 0 0 0 0 0
6 0 0 0 1 0 0 0 1 1 0
71 0 0 0 0 1 0 0 1 0 0
81 0 0 0 0 1 0 0 1 1 0
91 0 0 0 0 1 0 0 1 0 0
101 0 1 0 1 0 1 0 0 0 0
11| 0 0 0 0 0 1 1 0 0 0
121 1 0 0 0 0 0 0 0 0 0
13| 0 0 1 0 0 0 0 0 0 0
141 0 1 1 0 1 1 0 0 0 0
151 0 0 1 1 0 0 0 0 0 0
16| 0 0 1 0 0 0 1 1 1 0
17 1 0 0 1 1 0 0 1 1 0
18| 0 1 0 0 0 0 0 0 0 0
19| 0 1 0 0 0 1 1 1 0 1
200 0O 0 0 1 0 1 0 0 1 1

Figure 6.5: RSA Encryption Times Raw Data

xlix

6.2. RAW DATA

RSA Decryption Times - Milliseconds
Data Set Size in Characters
Run
50 | 100 | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 500
Number

1|13 27 29| 10| 10| 11| 10| 10| 12| 13
2112 14| 10| 10| 10 9/ 10| 10| 11 11
31 9 10] 11 9| 10| 11| 10| 10| 10| 10
41 11 11 10| 10| 10 9] 10| 11 10 9
5/ 9| 12| 12| 10| 10| 10| 10| 10| 10| 10
610 11 11 10 11| 10| 10| 10| 14| 10
7110 10| 10| 10| 10| 10| 11 9] 10| 11
8§10 10| 10| 10 9 10| 10 9] 11 10
910 10| 10 10| 10| 11| 10| 11 11 10
0(10] 10| 10| 10| 10| 10| 11| 10| 11 10
11{10] 10| 10| 10| 10 9 9] 10| 11 11
121 9| 11 10 0| 16| 17 0| 15| 21 0
131 0| 10 9/ 10| 10| 10| 10| 11 10 | 10
141 9 9 9 11 9 91 10 9 10| 10
15110 | 11 11 8 10| 10| 11} 10| 10| 10
16 | 11 10 9 11| 10| 10 9 9 91 10
17116 10| 10 9| 10| 11| 10 91 14| 10
18] 11 10 10| 10 9] 10| 10| 11 10 | 10
19 | 10 9 10| 10| 10| 10 9 91 10 9
20 | 11 10 | 10 9| 10 9 10| 10 9 9

Figure 6.6: RSA Decryption Times Raw Data

	Introduction
	Background Information
	256-bit Hashing Algorithms vs. 4096 bit Key Based Algorithms
	AES
	Typical Use Cases
	Mathematical Algorithm

	RSA
	Typical Use Cases
	Mathematical Algorithm

	Experiment Methodology
	Dependant Variables
	Time

	Controlled Variables
	Experimental Procedure (AES-CBC-256)
	Experimental Procedure (RSA-4096)

	Experiment Results
	Tabular Data Presentation
	Graphical Data Presentation
	Data Analysis
	Analyzing Key Generation Times
	Analyzing Encryption Times
	Analyzing Decryption Times

	Conclusions
	References
	Appendix
	Source Code
	Raw Data

