
Investigating the Speed and Security of

Cryptographic Key Based Hashing Algorithms

How effective in terms of speed and security is the
AES-CBC-256 encryption algorithm when compared to the

RSA-4096 encryption algorithm?

A Computer Science Extended Essay

Word Count: 3945

Finn Lestrange

August 2021

Contents
1 Introduction i

2 Background Information iii
2.1 256-bit Hashing Algorithms vs. 4096 bit Key Based Algorithms . . . iii
2.2 AES . iv

2.2.1 Typical Use Cases . v
2.2.2 Mathematical Algorithm . v

2.3 RSA . x
2.3.1 Typical Use Cases . x
2.3.2 Mathematical Algorithm . xi

3 Experiment Methodology xv
3.1 Dependant Variables . xv

3.1.1 Time . xv
3.2 Controlled Variables . xvi
3.3 Experimental Procedure (AES-CBC-256) xvi
3.4 Experimental Procedure (RSA-4096) xvi

4 Experiment Results xviii
4.1 Tabular Data Presentation .xviii
4.2 Graphical Data Presentation . xx
4.3 Data Analysis .xxiv

4.3.1 Analyzing Key Generation Timesxxiv
4.3.2 Analyzing Encryption Times xxv
4.3.3 Analyzing Decryption Times xxv

5 Conclusions xxvii

References xxix

6 Appendix xxxi
6.1 Source Code .xxxi
6.2 Raw Data . xlv

i

Abstract

The following research paper investigates the speed and security of the two most

popular symmetric and asymmetric encryption algorithms, AES and RSA respec-

tively. The paper provides some background information and explains the mathe-

matics required to understand how these encryption algorithms work, discussing the

AES Cipher Block Chaining Mode and RSA 4096. The algorithm testing carried

out was done using the Oracle Java programming language and for each encryption

algorithm there was a separate class that contained a key generation, encryption

and decryption methods making use of the Java system time method to count how

long each of these cryptographic operations for each of the separate algorithms took.

These programs were run on different sizes of pseudo random integer and character

input data and the results were collected for key generation and both the encryp-

tion and decryption speed per set of input data. The major findings of this paper

are as follows; AES is a more versatile encryption algorithm with a much wider

range of use cases due to the rapid encryption and decryption times provided by the

robust symmetrical algorithm. Whereas RSA is better suited to encrypting small

amounts of data for digital communications, due to the very secure keys but huge

key generation times and un-crackable ciphertext. The most notable data collected

is as follows; key generation times, AES ≈ 0.205 ms, RSA ≈ 1386 ms, resulting

in a 6762x increase in key generation time from AES to RSA. Thus, highlighting

why RSA is better suited to non-time critical messaging and why AES is preferred

for fast-access digital encryption, e.g. web technologies and confidential document

storage.

1. Introduction

Cryptographic hashing algorithms are computer programs or pieces of code that can

create a key that encrypts data such that the key has to be used to decrypt and read

the data again. They can be found in almost all applications of digital technology,

from mobile phones, to ATMs, email providers etc. as they are intended to allow

data to be stored in such a way that only valid users are meant to be able to have

access.

There are a large number of hashing algorithms out there ranging from extremely

complicated and highly secure, to fast and efficient algorithms designed with speed

over security, thus the choice of algorithm can be difficult when designing a product

or solution that requires data to be encrypted.

This paper will investigate two cryptographic hashing algorithms RSA-4096 & AES-

CBC-256 and how different sample sizes of pseudo-random data affects both the

speed of encryption and the speed of decryption. This paper will also provide ex-

planations of the mathematics behind how these hashing algorithms work and will

derive some typical and reasonable use cases for each of the algorithms based on

their performance in the tests.

This research could be useful to programmers who are trying to decide the right

hashing algorithm when designing a program, and for security researchers or com-

panies that want to compare which algorithm is right for their intended use case.

Hashing algorithms are used all the time and thus the vast number of them can

make it confusing as to which ones may be best suited to the largest number of

general tasks, thus this is the reason why I have chosen both a symmetric and an

asymmetric algorithm to compare.

i

CHAPTER 1. INTRODUCTION ii

To compare these algorithms, two programs will be written and run in real time,

one that preforms AES encryption and decryption and another that performs RSA

encryption and decryption and they will be tested on different sizes of pseudo ran-

dom integers and ascii characters. The time for encryption and decryption will be

recorded for each run using Java’s built in System timer, System.currentTimeMillis(),

and then the times for the increasing sizes of data for both operations can be stored

and analysed. This approach is also heavily dependant on the users hardware and

as such the results obtained here may not accurately reflect results that may be

obtained using the same methods.

2. Background Information

2.1 256-bit Hashing Algorithms vs. 4096 bit Key

Based Algorithms

A hashing algorithm is ”mathematical algorithm (or function) that maps data of

arbitrary size to a hash of a fixed size” [1]. In essense, all hashing algorithms take

some input data and perform a mathematical operation on the bytes of the data

such that the output of the algorithm can only be read using the key that was

used to encrypt the data. This key based system is the backbone for both the AES

(Advanced Encryption Standard) hashing algorithm and the RSA (Rivest, Shamir,

Adleman) hashing algorithm. Both algorithms utilise key based systems used for

encryption and decryption of data. However the distinct difference between the two

algorithms is that AES uses a single 256-bit key for both encryption and decryption,

called symmetric encryption, whereas RSA uses a two key system, one for encryp-

tion, called the public key and one for decryption called the private key, aptly named

asymmetric encryption. [2] The size of the keys used are also vastly different, as

AES can use 128, 192 or 256 bit keys and RSA can use 512, 1024, 2048, 3072 and

4096 bit keys.

Although they are both key based systems, it makes a good comparison as both of

these encryption algorithms essentially do the same thing; encrypt data using keys,

but these algorithms take very different approaches in terms of their cryptography

behind manipulating data to be encrypted or decrypted.

iii

2.2. AES iv

2.2 AES

The Advanced Encryption Standard is ”a data encryption standard endorsed by

the U.S. National Institute of Standards and Technology (NIST) as a replacement

for aging and weak Data Encryption Standard (DES); adopted by the NIST in the

late 1970s. The Advanced Encryption Standard offers far greater security than DES

for communications and commercial transactions over the Internet.”[3]. AES was

invented by two Belgian computer scientists, Joan Daemen and Vincent Rijmen and

was introduced in the year 2000 after the NIST put out a request for people to

create a new encryption standard. AES was selected by the NIST and has since

been accepted as the new standard for data encryption for the United States Gov-

ernment. This is due to the flexibility of the algorithm having varying key lengths

and that the mathematical algorithm behind AES is able to utilise newer, more

modern computer architecture. Additionally, AES is less computationally intensive

than its predecessor DES, thus making it both a sensible and suitable choice as the

new encryption standard [3].

As AES was the new standard for encrypting digital communications, naturally it

was picked apart by the crypto-security community and the initial implementation

of AES encryption, called ECB mode or Electronic Code Book had a few flaws.

Mainly that the cipher did not incorporate any randomness after the key had been

generated, thus if the same key was used on the same input data, it would always

produce the same output, also known as the ciphertext. This meant that more

modes of AES encryption were developed and the one that was adopted the fastest

was a mode of encryption called Cipher Block Chaining Mode or CBC for short.

This mode made use of a cryptographic technology that had been patented in 1977

by four engineers, William F. Ehrsam, Carl H. W. Meyer, John L. Smith and Walter

L. Tuchman [4]. This cipher mode used ”successive cycles of operation during each

2.2. AES v

of which an input block of clear data bits is ciphered under control of an input

set of cipher key bits to generate an output block of ciphered data bits” [4]. This

cipher also made use of a chaining mode; hence the named Cipher Block Chaining,

as for each new piece of data to be encrypted is uses part of the previous data that

was encrypted, thus individual blocks of data cannot be decrypted, which was one

of the main weaknesses with the initial AES implementation. Due to it’s robust

nature, the AES-CBC algorithm has been adopted as the go-to AES method for

fast encryption and decryption, and it is the algorithm that will be used throughout

the rest of this paper.

2.2.1 Typical Use Cases

Although the AES encryption standard was created for use by the U.S National

Institute of Standards and Technology (NIST) it is now one of the most widely used

cryptographic standard for the encryption and decryption of data. AES and it’s

subsidiary encryption modes (CBC, CFB etc.) are used in internet communications

and data transmission due to its speed and relative security [2]. As AES is a sym-

metric encryption cipher, it is much better at storing large amounts of data for long

periods of time, this is one of the main reasons why it has become so popular and

why the NIST was so quick to adopt it as their preferred method for securing digital

information.

2.2.2 Mathematical Algorithm

The mathematics explained in this section will be relating to the Cipher Block

Chaining implementation of the AES cipher. Something else to note is that due to

the nature of AES and how it is built upon so many other pieces of cryptography,

this will have to be a very simplified version of the mathematics behind how it works,

both to keep it relevant and to ensure that the rest of this paper can be understood

2.2. AES vi

without confusion.

Overall, AES uses a fairly robust algorithm that is based on many other algorithms,

and as such it is more of a culmination of many mathematical and cryptographic

functions that all work together to make AES work. This is where AES is very

unlike RSA, as RSA relies mostly on mathematical concepts. However, like the

RSA algorithm that will be explained in this paper later on, AES uses padding to

ensure that the data being encrypted is all the same size, this means that encrypted

data is usually larger than the original, un-encrypted data.

Key & IV Generation

Both the key and IV generation processes are quite simple. As the same key is used

for both the encryption a decryption operations, the can can be any secure random

number that is of the specified key length, typically 128 or 256 bits in length. The

Initialization Vector (IV) used in AES is what is called a cryptographic nonce,

meaning that it is a securely random number that is only used in one cryptographic

operation. The IV is generated by filling a 12 byte array with a cryptographically

secure random number or CRNG for short. The key is generated in much the same

way, an empty byte array is initialized of the specified key size, then it is filled using

the CRNG.

Encryption

Once the key and IV have been generated they can be used to encrypt data. This

process has six steps:

1. Key Expansion

2. Data Mixing

3. Substitution

2.2. AES vii

4. Shifting of Rows

5. Shifting of Columns

6. Repetition of Rounds

AES encryption is done using a process called rounds, and depending on the key

size, the number of rounds varies, for example, a 128 bit key means that there will

be 10 rounds and a 256 bit key uses 14 rounds [5].

The first step to take place is the key expansion, where by the AES key is used

to create a new set of cryptographic keys called round keys, with a new one being

generated for each round. This is done using the original AES key and a very com-

plex algorithm called Rijndael’s key schedule algorithm [5]. This algorithm takes

the AES key and performs various mathematical operations on it to produce smaller

keys that can be used for each round of encryption.

After the round key has been generated, the data that we want to encrypt is used in

the XOR bitwise operation with the current round key and the Initialization Vector,

not shown in diagram. This combines the round key and the plaintext data where

it is then stored in a matrix. The following diagram illustrates this process, where

the ⊕ signifies the XOR operation.

2.2. AES viii

Figure 2.1: Bitwise operation with addition of round key to plaintext input, [5]

The data is then used in an algorithm called a substitution permutation network,

that uses substitution bytes and a very complex mathematical algorithm to essen-

tially mix up the data in a specified way. Again, below is a very simplified diagram

of the process.

Figure 2.2: Substitution permutation network, [5]

As the data is arranged in a matrix, we can treat it almost like you would with a

spreadsheet, by manipulating the rows and columns. This starts by shifting every 8

bits that makes up the 128 or 256 block to the right by one place.

2.2. AES ix

Figure 2.3: Shifting rows 1 byte to the right, [5]

Finally, the columns of data in the matrix can be shuffled, illustrated in the diagram

below, where c (x) denotes the algorithm that shuffles the columns.

Figure 2.4: Mixing the columns, [5]

This process is then repeated for the number of rounds specified by the key size and

the output data from this is the ciphertext and is the encrypted version of the input

data we gave it.

Decryption

The decryption process is the reverse of all of the steps above, however one crucial

detail is that you need to find the inverse round keys and to do that you must have

the original AES key that was used to generate the original round keys.

2.3. RSA x

2.3 RSA

Ths Rivest, Shamir & Adleman Encryption Algorithm or RSA for short is a asym-

metrical (public and private key based) cryptographic hashing algorithm developed

by staff working at Massachusetts Institute of Technology, Ronald L. Rivest, Adi

Shamir, and Leonard M. Adleman. The very large key sizes utilized by the algorithm

and the complex mathematical structure behind it make it both useful for both peo-

ple and government agencies like the US National Security Agency who adopted

RSA for their communications [6]. The RSA algorithm was released in 1977 and

is now the most widely used asymmetrical encryption algorithm, as it allows in-

formation to be exchanged using a publicly known secret for users to encrypt data

with and a private secret that the receiver of information uses to decrypt the data [7].

In essence the RSA asymmetric encryption algorithm works by generating really

large numbers and then it checks if they are prime, when it finds the two large

prime numbers they are then used to create both the public and private keys [8].

However, there are many more steps in this process that will be explained in further

detail in Section 2.3.2.

2.3.1 Typical Use Cases

RSA encryption can be found on internet services such as Virtual Private Network

(VPN) providers networks, secure email services; like ProtonMail, and secure mes-

saging apps like Signal. RSA encryption is slowly making it’s way into out digital

lives even more are companies are realizing that it is a very effective way of keeping

user communications and data secure. By design the companies that hold user data

encrypted with RSA rely on the users remembering or keeping their private key.

Thus the only people that can read data encrypted using RSA are the people who

know both the public and the private key.

2.3. RSA xi

2.3.2 Mathematical Algorithm

The current implementation of RSA is heavily mathematical in nature, using mod-

ular arithmetic and mathematics of Euler, including The Totient Function, φ(n) [9].

The following explanation of the mathematics behind RSA will be split up into 3

sections; Key Generation, Encryption of Plaintext and Decryption of Ciphertext.

Key Generation

As mentioned in Section 2.1, RSA is an asymmetrical encryption algorithm, thus

it makes use of two keys, one for data encryption and another for the decryption

of data. These keys are called the public and private keys respectively. The key

generation process is centered around the generation of 1024 −→ 4096 bit numbers

such that the product of two prime numbers is equal to that large number.

Public Key Generation

The first step in key generation is for the user, with the aid of a computer program

to choose two large prime numbers that meet the length requirements of the key

that they want to generate. For this explanation we will be using p % q to denote

these primes.

Next, the user calculates the product of these prime numbers such that the prime

factors of this new number n and the two primes p & q are the prime factors of this

number.

n = p · q (2.1)

This product n is then half of the public encryption key.

2.3. RSA xii

Next, the user calculates a number e, making use of Euler’s Totient Function φ (x)

such that e is relatively prime to n.

φ (p · q) = (p− 1) (q − 1) (2.2)

This number e is then the other half of the public encryption key. Thus the private

key is the combination of (n, e)

Private Key Generation

The user now calculates d, the modular inverse of e.

d = e ·mod φ(n) (2.3)

Such that,

d · e = 1 · (mod φ(n)) (2.4)

This means that d is the private key. Now the public key can be sent out for users

to encrypt data and the receiver then uses d to decrypt the data [9].

Encryption of Plaintext

Once the private key has been sent out, another user can then encrypt a message

using it. The following steps are used to perform this operation.

First a user converts their message into a number m, using the ASCII alphabet,

using either computer software or a chart like the one below [9].

2.3. RSA xiii

Figure 2.5: ASCII Chart [10]

The users message, in ASCII form, is then raised to the power e (the second half

of the public key), and then multiplied by the modulo of the first half of the public

key, n.

c = me · (mod n) (2.5)

Where c is the ciphertext that is then sent to the person who has the private key to

decrypt the message.

Decryption of Ciphertext

Once the owner of the private key has received the ciphertext c, they use Euler’s

Theorem to retrieve the original message in ASCII form. As Euler’s Theorem states:

mφ(n) ≡ 1 ·mod (n) (2.6)

2.3. RSA xiv

we need the integer d that is the private key because d satisfies the relationship:

d · e ≡ 1 · (mod φ (n)) (2.7)

Thus with the knowledge of d the user can apply the mathematical relationships

in Equations 2.6 & 2.7 to discover the message integer m. Which can finally be

converted from ascii into the original message from the sender. [9]

3. Experiment Methodology

The process of experimentation for testing the speed of these two algorithms is quite

simple, there will be 10 trials where each algorithm will have to encrypt pseudo-

random ASCII characters. As each trial goes on, 50 more characters will be added

to the plaintext input data. The first trial will start with 50 characters and each set

of characters will be the same for each algorithm. The time taken to generate the

key, encrypt the data and the time taken to decrypt the data will be stored in a csv

file to later be used for data analysis.

Please Note: The results derived from this experiment may vary from results

obtained using the same or a similar process on your own computer, this is due to

the specifications of said device as this has an effect on the speed that data can be

encrypted and decrypted.

3.1 Dependant Variables

3.1.1 Time

To gather data for this experiment, the time taken for the key generation, and en-

cryption / decryption of various sizes of pseudo random character and integer data

sets will be recorded and used in the data analysis Section 4.3.

The time will be recorded using the Java built in system timer, System.currentTimeMillis()

and the results will be saved to a csv file.

xv

3.2. CONTROLLED VARIABLES xvi

3.2 Controlled Variables

� Pseudo-Random Data Sets −→ As this experiment will involve the comparison

of two encryption algorithms, we must ensure that the data being used is the

same between the two algorithms.

� Computational Power −→ As encryption and decryption speeds vary based

on computer hardware, all of the tests will be run on the exact same desktop

workstation using an Intel® Core i7 5930K.

3.3 Experimental Procedure (AES-CBC-256)

To test the performance of the AES-CBC-256 encryption algorithm, a class was

written that contained the following methods:

� ivGen −→ used to generate an Initialization Vector to be used for the encryp-

tion and decryption of plaintext

� keyGen −→ used to generate an AES-256 bit key

� encrypt −→ that takes a parameter of String plaintext to be encrypted

� decrypt −→ that takes a parameter of String ciphertext to be decrypted

3.4 Experimental Procedure (RSA-4096)

To test the RSA-4096 cryptographic algorithm, a class was also written containing

the following methods:

� keyGen −→ used to generate an RSA-2048 keyPair Object

� encrypt −→ that takes a parameter of String plaintext to be encrypted

� decrypt −→ that takes a parameter of String ciphertext to be decrypted

3.4. EXPERIMENTAL PROCEDURE (RSA-4096) xvii

Finally, there is a parent class that has access to the methods from both the AES

and RSA classes and that automates the testing and the data collection.

4. Experiment Results

4.1 Tabular Data Presentation

Listed below are tables of the averages for the key generation, encryption and de-

cryption times in milliseconds for both the AES and RSA algorithms.

AES - Key Generation Times

Input Data Size (Characters)

50 100 150 200 250 300 350 400 450 500

Average Time

(Milliseconds)
2 0 0 0 0 0 0 0 0.05 0

Figure 4.1: AES Key Generation Times (Averages)

AES - Encryption Times

Input Data Size (Characters)

50 100 150 200 250 300 350 400 450 500

Average Time

(Milliseconds)
0.25 0.05 0 0.05 0.2 0.15 0.1 0.1 0 0.15

Figure 4.2: AES Encryption Times (Averages)

xviii

4.1. TABULAR DATA PRESENTATION xix

AES - Decryption Times

Input Data Size (Characters)

50 100 150 200 250 300 350 400 450 500

Average Time

(Milliseconds)
0.1 0.05 0.15 0.15 0.1 0.05 0.1 0.15 0.05 0.1

Figure 4.3: AES Decryption Times (Averages)

RSA - Key Generation Times

Input Data Size (Characters)

50 100 150 200 250

Average Time

(Milliseconds)
1392 1532.25 1509.85 1422.2 1069.65

RSA - Key Generation Times

Input Data Size (Characters)

300 350 400 450 500

Average Time

(Milliseconds)
1539.35 1433.65 1074.7 1223.6 1664.7

Figure 4.4: RSA Key Generation Times (Average)

4.2. GRAPHICAL DATA PRESENTATION xx

RSA - Encryption Times

Input Data Size (Characters)

50 100 150 200 250 300 350 400 450 500

Average Time

(Milliseconds)
0.25 0.4 0.2 0.35 0.3 0.45 0.2 0.5 0.3 0.2

Figure 4.5: RSA Encryption Times (Averages)

RSA - Decryption Times

Input Data Size (Characters)

50 100 150 200 250 300 350 400 450 500

Average Time

(Milliseconds)
10.05 11.25 11.05 9.85 10.2 10.3 9.5 10.15 11.2 9.65

Figure 4.6: RSA Decryption Times (Averages)

4.2 Graphical Data Presentation

Please Note: The following graphs are for the individual results as aggregating

the results for each category for each algorithm into one graph would not be

possible due to the orders of magnitude difference for some of the results.

4.2. GRAPHICAL DATA PRESENTATION xxi

Figure 4.7: AES Key Generation Time vs. Input Data Size

Figure 4.8: AES Encryption Time vs. Input Data Size

4.2. GRAPHICAL DATA PRESENTATION xxii

Figure 4.9: AES Decryption Time vs. Input Data Size

Figure 4.10: RSA Key Generation Time vs. Input Data Size

4.2. GRAPHICAL DATA PRESENTATION xxiii

Figure 4.11: RSA Encryption Time vs. Input Data Size

Figure 4.12: RSA Decryption Time vs. Input Data Size

4.3. DATA ANALYSIS xxiv

4.3 Data Analysis

The following section will explain the trends and patterns in the data. We will ana-

lyze and compare the key generation times, encryption times and decryption times

for the results gathered from the AES and RSA data.

4.3.1 Analyzing Key Generation Times

From tables 4.1 and 4.4 it can be observed that clearly the key generation process

for RSA-4096 is exponentially higher than AES-256, with the average key generation

time being less than a millisecond whereas if we average the key generation times

for RSA, that comes out at:

AES KeyGen Average = 0.205 ms (4.1)

RSA KeyGen Average = 1386.195 ≈ 1386 ms (4.2)

This also means that the average RSA key generation time takes ≈ 6762 times longer

to generate a set of keys than AES takes to generate it’s respective key.

1386.195

0.205
≈ 6762 (4.3)

This is the first of many indications as to the ideal use case for RSA.

Another observation to note is that there are a few anomalous results, namely the

average key generation time for AES when generating a key for the 50 & 450 char-

4.3. DATA ANALYSIS xxv

acter data sets. This small rise in the time taken could have been caused by a lack

of system entropy or another process on the computer using the systems secure en-

tropy source. This in terms of AES doesn’t have a significant effect on the time as a

maximum key generation time of 2 ms is almost a negligible difference in the grand

scheme of things.

Something else of note is that for the AES key generation times, the first run usually

takes longer to generate, this could be caused again by the systems secure entropy

source being used by another process or that it needs to be initialized.

In terms of RSA, the key generation times seem entirely random, and they are also

very high when compared to AES. However, this fits with what we know about the

RSA Mathematical Algorithm and how the RSA keys are generated as the process

is very computationally intensive. Thus far the data collected supports what we

know about the two algorithms.

4.3.2 Analyzing Encryption Times

When we observe the data for the encryption times, the times for the two algorithms

are at least in the same order of magnitude, unlike the times for key generation, with

all of the encryption times under 1 ms. For both cryptographic algorithms the times

for data encryption seem to be entirely unrelated to the size of the input data set,

this can be observed in Graphs 4.8 and 4.11. As we can only speculate about why

this happens, I would suggest that these seemingly uncorrelated results could be

due to the algorithms having to add padding to the plaintext input data.

4.3.3 Analyzing Decryption Times

When observing that data for decryption times, it can be noted that the decryp-

tion times for the AES algorithm is a single order of magnitude smaller than the

4.3. DATA ANALYSIS xxvi

decryption times for RSA, with the following averages being calculated:

AES Decryption Time Average = 0.1 ms (4.4)

RSA Decryption Time Average = 10.32 ms (4.5)

Here we see another case where the RSA algorithm is performing as we would expect

as the decryption process for RSA is more computationally intensive when compared

to the process the AES uses to decrypt data.

5. Conclusions

When drawing conclusions from this data and from what has been discussed about

how these two cryptographic algorithms work, something that needs to be kept in

mind is that AES is a symmetric encryption algorithm and RSA is an asymmetric

algorithm. This means that by design RSA is meant to be more secure and the fact

that is had to generate two keys that are 16 times larger than the single key that

AES has to generate. This also means that the data collected fits exactly with what

is known about the RSA algorithm and as such it can be said with confidence that

the data collected is valid and accurate as the testing was completely automated and

and had no human interaction. The code was also written in a robust and versatile

programming language, Java in this case, and this helps to eliminate that any issues

with the language that could have affected the outcome of the tests.

Something of note from both the research and the experiment is that the choice of

using RSA to compare to AES may not have been the best comparison in terms of

determining which of the two are better. This is because the two algorithms are

entirely different in their approach and thus it makes them challenging to compare.

However, the results of this investigation do demonstrate to us that both of the

algorithms do have use cases that they are best suited to.

From the data analyzed we can see that the RSA algorithm is best suited to sending

digital communications and small messages, that are not time and space critical

due to the high time and space complexity. The data also shows us that the AES

algorithm is much more versatile and is best suited for storing large amounts of data

as the time for key generation, decryption and encryption is small in comparison to

the RSA algorithm.

xxvii

CHAPTER 5. CONCLUSIONS xxviii

This research paper will hopefully prove useful to developers in helping to guide

them in choosing a symmetric or asymmetric encryption algorithm for the storage

and transmission of data, this ultimately will help to make future applications and

our digital information more secure.

References
[1] J. Code, Hashing algorithms — jscrambler blog, Jscrambler. [Online]. Avail-

able: https://blog.jscrambler.com/hashing- algorithms (visited on

07/26/2021).

[2] A. M. Abdullah, Advanced encryption standard (aes) algorithm to encrypt

and decrypt data, ResearchGate, Jun. 2017. [Online]. Available: https://

www.researchgate.net/publication/317615794_Advanced_Encryption_

Standard_AES_Algorithm _to_Encrypt_and_Decrypt _Data (visited on

08/07/2021).

[3] G. J. Simmons, AES — cryptology — Britannica. 2020. [Online]. Available:

https://www.britannica.com/topic/AES.

[4] W. F. Ehrsam, C. H. W. Meyer, J. L. Smith, and W. L. Tuchman, Mes-

sage verification and transmission error detection by block chaining, Google

Patents, 1977. [Online]. Available: https://patents.google.com/patent/

US4074066A/en (visited on 08/22/2021).

[5] D. Crawford, A complete guide to aes encryption (128-bit and 256-bit) - propri-

vacy.com, ProPrivacy.com, Feb. 2019. [Online]. Available: https://proprivacy.

com/guides/aes-encryption.

[6] G. J. Simmons, RSA encryption — Britannica. 2020. [Online]. Available:

https://www.britannica.com/topic/RSA-encryption.

[7] Rsa cryptography: History and uses – telsy, Telsy, May 2021. [Online]. Avail-

able: https://www.telsy.com/rsa-cryptography-history-and-uses/

(visited on 08/16/2021).

[8] P. Fox, Public key encryption (article), Khan Academy. [Online]. Available:

https://www.khanacademy.org/computing/computers-and-internet/

xxix

https://blog.jscrambler.com/hashing-algorithms
https://www.researchgate.net/publication/317615794_Advanced_Encryption_Standard_AES_Algorithm_to_Encrypt_and_Decrypt_Data
https://www.researchgate.net/publication/317615794_Advanced_Encryption_Standard_AES_Algorithm_to_Encrypt_and_Decrypt_Data
https://www.researchgate.net/publication/317615794_Advanced_Encryption_Standard_AES_Algorithm_to_Encrypt_and_Decrypt_Data
https://www.britannica.com/topic/AES
https://patents.google.com/patent/US4074066A/en
https://patents.google.com/patent/US4074066A/en
https://proprivacy.com/guides/aes-encryption
https://proprivacy.com/guides/aes-encryption
https://www.britannica.com/topic/RSA-encryption
https://www.telsy.com/rsa-cryptography-history-and-uses/
https://www.khanacademy.org/computing/computers-and-internet/xcae6f4a7ff015e7d:online-data-security/xcae6f4a7ff015e7d:data-encryption-techniques/a/public-key-encryption
https://www.khanacademy.org/computing/computers-and-internet/xcae6f4a7ff015e7d:online-data-security/xcae6f4a7ff015e7d:data-encryption-techniques/a/public-key-encryption

REFERENCES xxx

xcae6f4a7ff015e7d:online-data-security/xcae6f4a7ff015e7d:data-

encryption-techniques/a/public-key-encryption.

[9] A. Katz, A. Ng, and P. Bourg, Rsa encryption — brilliant math and science

wiki, Brilliant.org, 2010. [Online]. Available: https://brilliant.org/wiki/

rsa-encryption/.

[10] commfront, Ascii chart, CommFront. [Online]. Available: https : / / www .

commfront.com/pages/ascii-chart (visited on 08/22/2021).

https://www.khanacademy.org/computing/computers-and-internet/xcae6f4a7ff015e7d:online-data-security/xcae6f4a7ff015e7d:data-encryption-techniques/a/public-key-encryption
https://www.khanacademy.org/computing/computers-and-internet/xcae6f4a7ff015e7d:online-data-security/xcae6f4a7ff015e7d:data-encryption-techniques/a/public-key-encryption
https://www.khanacademy.org/computing/computers-and-internet/xcae6f4a7ff015e7d:online-data-security/xcae6f4a7ff015e7d:data-encryption-techniques/a/public-key-encryption
https://www.khanacademy.org/computing/computers-and-internet/xcae6f4a7ff015e7d:online-data-security/xcae6f4a7ff015e7d:data-encryption-techniques/a/public-key-encryption
https://brilliant.org/wiki/rsa-encryption/
https://brilliant.org/wiki/rsa-encryption/
https://www.commfront.com/pages/ascii-chart
https://www.commfront.com/pages/ascii-chart

6. Appendix

6.1 Source Code

Below is the Java 16 source code that was used with the experiment with the ex-

perimental procedures to collect the raw data.

// Finn Lestrange = 27/08 = Extended Essay Code => Main Class F i l e

// Imports

import javax . crypto . * ;

import javax . crypto . spec . IvParameterSpec ;

import javax . crypto . spec . SecretKeySpec ;

import java . i o . * ;

import java . n io . cha r s e t . StandardCharsets ;

import java . s e c u r i t y . * ;

import java . u t i l . Base64 ;

import java . u t i l . L inkedLis t ;

import java . u t i l . Loca le ;

import java . u t i l .Random ;

pub l i c c l a s s Algorithms {

// L inkedL i s t s to s t o r e the t imes taken f o r the var i ous s t ag e s o f

the a lgor i thms

protec ted s t a t i c LinkedList<Long> encTimeAES = new LinkedList<>() ;

p ro tec ted s t a t i c LinkedList<Long> decTimeAES = new LinkedList<>() ;

p ro tec ted s t a t i c LinkedList<Long> keyTimeAES = new LinkedList<>() ;

p ro tec ted s t a t i c LinkedList<Boolean> validAES = new LinkedList<>() ;

p ro tec ted s t a t i c LinkedList<Long> encTimeRSA = new LinkedList<>() ;

xxxi

6.1. SOURCE CODE xxxii

protec ted s t a t i c LinkedList<Long> decTimeRSA = new LinkedList<>() ;

p ro tec ted s t a t i c LinkedList<Long> keyTimeRSA = new LinkedList<>() ;

p ro tec ted s t a t i c LinkedList<Boolean> validRSA = new LinkedList<>() ;

// LinkedLis t to s t o r e the randomly generated s t r i n g s

protec ted s t a t i c LinkedList<Str ing> randomStrings = new LinkedList

<>() ;

// RSA Encryption and decrypt ion c l a s s

s t a t i c c l a s s RSA {

pub l i c s t a t i c KeyPair keypa i r ;

pub l i c s t a t i c void keyGen () {

t ry {

// Creates a new in s t ance o f the keyGenerator c l a s s f o r

RSA

KeyPairGenerator keyPairGenerator = KeyPairGenerator .

g e t In s tance (”RSA”) ;

// I n i t i a l i z e s the keyGenerator with an RSA key o f s i z e

2048

keyPairGenerator . i n i t i a l i z e (4096) ;

// Sto r e s the keyPair in the g l oba l v a r i ab l e so that i t

can be used by the other methods

keypa i r = keyPairGenerator . generateKeyPair () ;

} catch (NoSuchAlgorithmException e) {

e . pr intStackTrace () ;

}

}

pub l i c s t a t i c S t r ing encrypt (S t r ing p l a i n t e x t) {

6.1. SOURCE CODE xxxiii

St r ing b64out = ”” ;

t ry {

// I n i t i a l i z e s a new in s t ance o f the RSA c iphe r in

encrypt mode us ing the pub l i c key generated be f o r e

Cipher c iphe r = Cipher . g e t In s tance (”RSA”) ;

c iphe r . i n i t (Cipher .ENCRYPTMODE, keypa i r . ge tPub l i c ()) ;

// Gets the UTF 8 bytes o f the p l a i n t e x t to be

encrypted

byte [] p l a in t ex tByte s = p l a i n t e x t . getBytes (

StandardCharsets . UTF 8) ;

// Generated the c i ph e r t e x t from the p l a i n t e x t

byte [] c i ph e r t ex t = c iphe r . doFinal (p l a in t ex tByte s) ;

// Converts the encrypted bytes to a base64 s t r i n g f o r

ease o f use and s to rage

b64out = Base64 . getEncoder () . encodeToString (c i ph e r t e x t)

;

} catch (NoSuchPaddingException | NoSuchAlgorithmException

| Inval idKeyExcept ion | I l l e g a lB l o ckS i z eExc ep t i on |

BadPaddingException e) {

e . pr intStackTrace () ;

}

re turn b64out ; // r e tu rn s the base64 encoded c i ph e r t e x t

}

pub l i c s t a t i c S t r ing decrypt (S t r ing c i ph e r t ex t) {

St r ing message = ”” ;

t ry {

// I n i t i a l i z e s the c iphe r c l a s s f o r RSA decrypt mode

us ing the p r i va t e key generated be f o r e

Cipher c iphe r = Cipher . g e t In s tance (”RSA”) ;

c iphe r . i n i t (Cipher .DECRYPTMODE, keypa i r . g e tPr iva t e ()) ;

6.1. SOURCE CODE xxxiv

// Decodes the base64 c i ph e r t ex t in to a byte array

byte [] cipherTextNoB64 = Base64 . getDecoder () . decode (

c i ph e r t ex t) ;

// Decrypts the c i ph e r t e x t in to a byte array

byte [] messageBytes = c iphe r . doFinal (cipherTextNoB64) ;

// Converts the decrypted byte array in to a human

readab le S t r ing

message = new St r ing (messageBytes) ;

} catch (NoSuchPaddingException | I l l e g a lB l o ckS i z eExc ep t i on

| NoSuchAlgorithmException | BadPaddingException |

Inval idKeyExcept ion e) {

e . pr intStackTrace () ;

}

re turn message ; // r e tu rn s the decrypted c i ph e r t e x t

}

}

// AES Encryption and decrypt ion c l a s s

s t a t i c c l a s s AES {

pub l i c s t a t i c IvParameterSpec ivSpecG ;

pub l i c s t a t i c SecretKeySpec keySpecG ;

// AES Key gene ra t ing method

pub l i c s t a t i c void keyGen () throws NoSuchAlgorithmException {

// Create a new key generato r f o r AES

KeyGenerator keyGenerator = KeyGenerator . g e t In s tance (”AES”)

;

6.1. SOURCE CODE xxxv

keyGenerator . i n i t (256) ; // I n i t i a l i z e s the keyGenerator

with a 256 b i t key

SecretKey sKey = keyGenerator . generateKey () ; // Generates

the key

// Creates a new se c r e tk ey f o r the AES algor i thm

// This method conver t s a g ene r i c 256 b i t key to a 256 b i t

aes key

// saves the key to the g l oba l v a r i ab l e so that i t can be

used in the decrypt ion method without

// having to worry about sav ing to f i l e s and read ing from

f i l e s => adds unnecessary compl i ca t i ons

keySpecG = new SecretKeySpec (sKey . getEncoded () , ”AES”) ;

}

// I n i t i a l i z a t i o n Vector gene ra t ing method

pub l i c s t a t i c void ivGen () {

SecureRandom secureRandom = new SecureRandom () ;

// Creates a new in s t ance o f s e cu re random that uses the

systems source o f entropy to generate random numbers

byte [] i v = new byte [1 6] ; // Creates a new 16 byte iv =>

standard iv s i z e f o r aes

secureRandom . nextBytes (i v) ; // f i l l s the 16 bytes o f the iv

with a secureRandom number

// Creates a new i v S p e c i f i c a t i o n to be used with the

// c iphe r c l a s s in the encrypt ion and decrypt ion methods

ivSpecG = new IvParameterSpec (i v) ; // Saves the iv Spec to

the g l oba l v a r i a b l e so that i t can be used f o r both

ope ra t i on s

}

pub l i c s t a t i c S t r ing encrypt (S t r ing data)

6.1. SOURCE CODE xxxvi

throws NoSuchAlgorithmException , NoSuchPaddingException

,

Inval idAlgor ithmParameterException , Inval idKeyException

,

I l l e g a lB l o ckS i z eExc ep t i on , BadPaddingException {

IvParameterSpec ivSpec = ivSpecG ; // Generates the IV us ing

the method above

SecretKeySpec sKeySpec = keySpecG ; // Generates the key

us ing the method above

// Creates a new in s t ance o f the c iphe r c l a s s to be used to

encrypt the data us ing the AES cbc standard

Cipher c iphe r = Cipher . g e t In s tance (”AES/CBC/PKCS5PADDING”) ;

c iphe r . i n i t (Cipher .ENCRYPTMODE, sKeySpec , ivSpec) ; //

I n i t i a l i z e s the c iphe r with the r equ i r ed mode , key and

iv

byte [] encData = c iphe r . doFinal (data . getBytes (

StandardCharsets . UTF 8)) ; // Encrypts the data with the

c iphe r

re turn Base64 . getEncoder () . encodeToString (encData) ; //

Returns the encrypted s t r i n g in base64

}

pub l i c s t a t i c S t r ing decrypt (S t r ing data)

throws NoSuchPaddingException , NoSuchAlgorithmException

, Inval idAlgor ithmParameterException ,

Inval idKeyException , I l l e g a lB l o ckS i z eExc ep t i on ,

BadPaddingException {

// Does the exact same th ing in r e v e r s e to the encrypt

method

Cipher c iphe r = Cipher . g e t In s tance (”AES/CBC/PKCS5PADDING”) ;

6.1. SOURCE CODE xxxvii

c iphe r . i n i t (Cipher .DECRYPTMODE, keySpecG , ivSpecG) ; //

This time we s e t the mode to DECRYPT

byte [] decoded = c iphe r . doFinal (Base64 . getDecoder () . decode (

data)) ; // Decrypts the data from base 64 and then

// from the aes encrypted c i phe r t e x t back in to a s t r i n g

return new St r ing (decoded) ; // r e tu rn s a s t r i n g o f the

decoded aes c i ph e r t e x t

}

}

// AES Test ing method

pub l i c s t a t i c void testAES () {

System . out . p r i n t l n (”Test ing AES . . . ”) ;

// Creates a new in s t ance o f the AES c l a s s

AES aes = new AES() ;

f o r (i n t i = 0 ; i < 10 ; i++) {

System . out . p r i n t l n (”Pass ” + (i + 1) + ” : Running . . . ”) ;

t ry {

// Generates the iv used f o r the AES encrypt ion

aes . ivGen () ;

// Times the key gene ra t i on f o r the AES algor i thm

long s = System . cur r entT imeMi l l i s () ;

aes . keyGen () ;

long s t = System . cur r entT imeMi l l i s () ;

long t = s t = s ;

keyTimeAES . add (t) ;

// Times the encrypt ion o f the random p l a i n t e x t S t r ing

s = System . cur rentT imeMi l l i s () ;

S t r ing c i ph e r t e x t = aes . encrypt (randomStrings . get (i)) ;

s t = System . cur r entT imeMi l l i s () ;

t = s t = s ;

encTimeAES . add (t) ;

6.1. SOURCE CODE xxxviii

// Times the decrypt ion o f the c i ph e r t ex t

s = System . cur rentT imeMi l l i s () ;

S t r ing message = aes . decrypt (c i ph e r t ex t) ;

s t = System . cur r entT imeMi l l i s () ;

t = s t = s ;

decTimeAES . add (t) ;

// Performs s t r i n g v e r i f i c a t i o n check to ensure that

the input data matches the decrypted s t r i n g

i f (randomStrings . get (i) . compareTo (message) == 0) {

validAES . add (Boolean .TRUE) ;

System . out . p r i n t l n (”Pass ” + (i + 1) + ” :

Su c c e s s f u l ! ”) ;

} e l s e {

validAES . add (Boolean .FALSE) ;

System . out . p r i n t l n (”Pass ” + (i + 1) + ” : Fa i l ed =>

Input St r ing mismatch with decrypted data ! ”) ;

}

} catch (NoSuchAlgorithmException |

Inval idAlgor ithmParameterExcept ion |

NoSuchPaddingException | I l l e g a lB l o ckS i z eExc ep t i on |

BadPaddingException | Inval idKeyExcept ion e) {

e . pr intStackTrace () ;

}

}

}

// RSA Test ing method

pub l i c s t a t i c void testRSA () {

System . out . p r i n t l n (”Test ing RSA . . . ”) ;

6.1. SOURCE CODE xxxix

// Creates a new in s t ance o f the RSA c l a s s

RSA rsa = new RSA() ;

f o r (i n t i = 0 ; i < 10 ; i++) {

System . out . p r i n t l n (”Pass ” + (i + 1) + ” : Running . . . ”) ;

t ry {

// Times the key gene ra t i on f o r the AES algor i thm

long s = System . cur r entT imeMi l l i s () ;

r sa . keyGen () ;

long s t = System . cur r entT imeMi l l i s () ;

long t = s t = s ;

keyTimeRSA . add (t) ;

// Times the encrypt ion o f the random p l a i n t e x t S t r ing

s = System . cur rentT imeMi l l i s () ;

S t r ing c i ph e r t e x t = rsa . encrypt (randomStrings . get (i)) ;

s t = System . cur r entT imeMi l l i s () ;

t = s t = s ;

encTimeRSA . add (t) ;

// Times the decrypt ion o f the c i ph e r t ex t

s = System . cur rentT imeMi l l i s () ;

S t r ing message = rsa . decrypt (c i ph e r t e x t) ;

s t = System . cur r entT imeMi l l i s () ;

t = s t = s ;

decTimeRSA . add (t) ;

// Performs s t r i n g v e r i f i c a t i o n check to ensure that

the input data matches the decrypted s t r i n g

i f (randomStrings . get (i) . compareTo (message) == 0) {

validRSA . add (Boolean .TRUE) ;

6.1. SOURCE CODE xl

System . out . p r i n t l n (”Pass ” + (i + 1) + ” :

Su c c e s s f u l ! ”) ;

} e l s e {

validAES . add (Boolean .FALSE) ;

System . out . p r i n t l n (”Pass ” + (i + 1) + ” : Fa i l ed =>

Input St r ing mismatch with decrypted data ! ”) ;

}

} catch (Exception e) {

e . pr intStackTrace () ;

}

}

}

// P la in t ex t St r ing Generator o f g iven i n t e g e r l ength

pub l i c s t a t i c S t r ing randomPlaintextGen (i n t l ength) {

St r ing upper = ”ABCDEFGHIJKLMNOPQRSTUVWXYZ” ;

S t r ing lower = upper . toLowerCase (Locale .ROOT) ;

S t r ing dec ima lD ig i t s = ”1234567890” ;

S t r ing acceptedChars = upper + lower + dec ima lD ig i t s ;

Random random = new Random() ;

S t r i ngBu i l d e r out = new St r ingBu i l d e r (l ength) ;

f o r (i n t i = 0 ; i < l ength ; i++) {

out . append (acceptedChars . charAt (random . next Int (

acceptedChars . l ength ()))) ;

}

re turn out . t oS t r i ng () ;

}

6.1. SOURCE CODE xli

// Generates and s t o r e s randomly generated p l a i n t e x t s t r i n g s

pub l i c s t a t i c void f i l lRandomPla intext () {

// Random s t r i n g s gene ra t i on

i n t l ength = 0 ;

f o r (i n t i = 0 ; i < 10 ; i++) {

l ength += 50 ;

randomStrings . add (randomPlaintextGen (l ength)) ;

}

}

// Saves an output f i l e with the s t a t i s t i c s from t e s t i n g the

a lgor i thms

pub l i c s t a t i c void summary () {

t ry {

wr i t eL inkedL i s tToFi l e (”keyTimeAES” , keyTimeAES) ;

wr i t eL inkedL i s tToFi l e (”encTimeAES” , encTimeAES) ;

wr i t eL inkedL i s tToFi l e (”decTimeAES” , decTimeAES) ;

wr i t eL inkedL i s tToFi l e (”keyTimeRSA” , keyTimeRSA) ;

wr i t eL inkedL i s tToFi l e (”encTimeRSA” , encTimeRSA) ;

wr i t eL inkedL i s tToFi l e (”decTimeRSA” , decTimeRSA) ;

} catch (Exception e) {

e . pr intStackTrace () ;

}

}

pub l i c s t a t i c void wr i t eL inkedL i s tToFi l e (S t r ing fi leName ,

L inkedLis t l i s t) {

t ry {

6.1. SOURCE CODE xlii

// https : // s tackove r f l ow . com/ que s t i on s /24982744/ p r i n twr i t e r

=to=append=data=i f= f i l e =e x i s t

F i l e f i l e = new F i l e (” outputs /” + fi leName + ” . txt ”) ;

Pr intWriter pr intWri te r = nu l l ;

i f (f i l e . e x i s t s ()) {

pr intWr i te r = new PrintWriter (new FileOutputStream (f i l e

, t rue)) ;

} e l s e {

pr intWr i te r = new PrintWriter (f i l e) ;

}

pr intWr i te r . p r i n t l n (l i s t . t oS t r i ng ()) ;

p r intWr i te r . c l o s e () ;

} catch (Exception e) {

e . pr intStackTrace () ;

}

}

pub l i c s t a t i c void runTests (i n t t e s t s) {

f o r (i n t i = 0 ; i < t e s t s ; i++) {

// c l e a r s a l l the l i s t s ready to run another t e s t

i f (i > 0) {

randomStrings . c l e a r () ;

keyTimeAES . c l e a r () ;

encTimeAES . c l e a r () ;

decTimeAES . c l e a r () ;

validAES . c l e a r () ;

keyTimeRSA . c l e a r () ;

encTimeRSA . c l e a r () ;

decTimeRSA . c l e a r () ;

validRSA . c l e a r () ;

}

6.1. SOURCE CODE xliii

// F i l l s the p l a i n t e x t array with the random s t r i n g s

f i l lRandomPla intext () ;

// Tests the AES algor i thm

testAES () ;

// Tests the RSA algor i thm

testRSA () ;

summary () ;

}

// p r in t out d e s c r i p t i o n o f what i s in each output f i l e

System . out . p r i n t l n (”Performance S p e c i f i c a t i o n s => mi l l i s e c ond s ”

) ;

System . out . p r i n t l n (”Key Generation Times : ”) ;

System . out . p r i n t l n (”Encryption Times : ”) ;

System . out . p r i n t l n (”Decryption Times : ”) ;

System . out . p r i n t l n (”Val id Encrypts & Decrypts : ”) ;

}

pub l i c s t a t i c void main (St r ing [] a rgs) {

runTests (20) ;

}

}

6.1. SOURCE CODE xliv

6.2. RAW DATA xlv

6.2 Raw Data

AES Key Generation Times - Milliseconds

Data Set Size in Characters

Run Number 50 100 150 200 250 300 350 400 450 500

1 39 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0

6 1 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0

13 0 0 0 0 0 0 0 0 0 0

14 0 0 0 0 0 0 0 0 0 0

15 0 0 0 0 0 0 0 0 0 0

16 0 0 0 0 0 0 0 0 0 0

17 0 0 0 0 0 0 0 0 1 0

18 0 0 0 0 0 0 0 0 0 0

19 0 0 0 0 0 0 0 0 0 0

20 0 0 0 0 0 0 0 0 0 0

Figure 6.1: AES Key Generation Times Raw Data

6.2. RAW DATA xlvi

AES Encryption Times - Milliseconds

Data Set Size in Characters

Run Number 50 100 150 200 250 300 350 400 450 500

1 3 0 0 0 0 1 0 0 0 1

2 0 0 0 0 1 1 0 1 0 0

3 0 0 0 0 1 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 1 0 0 1 0 0

6 0 0 0 1 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0

8 0 1 0 0 0 0 1 0 0 1

9 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0

11 0 0 0 0 1 0 0 0 0 1

12 0 0 0 0 0 0 0 0 0 0

13 0 0 0 0 0 0 0 0 0 0

14 1 0 0 0 0 0 0 0 0 0

15 0 0 0 0 0 0 0 0 0 0

16 0 0 0 0 0 1 0 0 0 0

17 0 0 0 0 0 0 0 0 0 0

18 0 0 0 0 0 0 0 0 0 0

19 1 0 0 0 0 0 1 0 0 0

20 0 0 0 0 0 0 0 0 0 0

Figure 6.2: AES Encryption Times Raw Data

6.2. RAW DATA xlvii

AES Decryption Times - Milliseconds

Data Set Size in Characters

Run Number 50 100 150 200 250 300 350 400 450 500

1 0 0 1 2 0 0 1 0 0 0

2 0 0 1 0 0 1 1 0 1 1

3 0 0 0 0 0 0 0 0 0 0

4 0 1 0 0 1 0 0 1 0 1

5 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 1 0 0 0 0 0

9 0 0 0 1 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0

13 0 0 0 0 0 0 0 0 0 0

14 0 0 0 0 0 0 0 0 0 0

15 1 0 0 0 0 0 0 1 0 0

16 1 0 0 0 0 0 0 0 0 0

17 0 0 0 0 0 0 0 0 0 0

18 0 0 0 0 0 0 0 1 0 0

19 0 0 0 0 0 0 0 0 0 0

20 0 0 1 0 0 0 0 0 0 0

Figure 6.3: AES Decryption Times Raw Data

6.2. RAW DATA xlviii

RSA Key Generation Times - Milliseconds

Data Set Size in Characters

Run

Number
50 100 150 200 250 300 350 400 450 500

1 1332 1707 3728 1608 564 2383 1120 471 841 1186

2 1003 1864 943 1120 740 682 2639 554 1491 771

3 1088 889 797 1042 1443 554 1382 1285 1494 1167

4 279 4820 2025 1288 704 926 789 869 325 2551

5 1313 3761 637 2004 747 2772 1685 2457 690 1121

6 1366 787 1373 1163 523 1026 1287 1460 1618 1119

7 1483 1563 2900 2326 925 1082 1027 408 552 1386

8 2486 249 395 468 1687 400 2529 320 1003 3553

9 754 1093 3628 2181 1056 469 1451 210 1921 1031

10 1157 992 1360 1347 1127 1691 2118 597 730 1477

11 1285 1613 894 438 1871 518 840 1464 2028 3637

12 2116 321 2737 2010 927 3299 1074 418 2243 725

13 566 1666 816 2150 1651 2746 2782 1662 680 2306

14 2055 855 1694 243 319 460 1309 2438 244 738

15 3027 672 1305 3459 1036 569 1077 1495 2650 585

16 199 1031 709 666 2444 1279 1292 1828 1129 460

17 912 3204 2058 2567 613 2343 725 410 917 2109

18 2475 1438 1215 871 1317 2020 1693 673 1873 2106

19 1333 1684 447 848 774 3133 833 559 833 4479

20 1611 436 536 645 925 2435 1021 1916 1210 787

Figure 6.4: RSA Key Generation Times Raw Data

6.2. RAW DATA xlix

RSA Encryption Times - Milliseconds

Data Set Size in Characters

Run

Number
50 100 150 200 250 300 350 400 450 500

1 1 1 0 1 1 1 0 1 0 1

2 0 1 0 0 0 1 1 1 0 0

3 0 0 0 1 0 1 0 0 0 0

4 1 1 0 0 0 1 0 1 1 1

5 1 1 0 0 0 0 0 0 0 0

6 0 0 0 1 0 0 0 1 1 0

7 0 0 0 0 1 0 0 1 0 0

8 0 0 0 0 1 0 0 1 1 0

9 0 0 0 0 1 0 0 1 0 0

10 0 1 0 1 0 1 0 0 0 0

11 0 0 0 0 0 1 1 0 0 0

12 1 0 0 0 0 0 0 0 0 0

13 0 0 1 0 0 0 0 0 0 0

14 0 1 1 0 1 1 0 0 0 0

15 0 0 1 1 0 0 0 0 0 0

16 0 0 1 0 0 0 1 1 1 0

17 1 0 0 1 1 0 0 1 1 0

18 0 1 0 0 0 0 0 0 0 0

19 0 1 0 0 0 1 1 1 0 1

20 0 0 0 1 0 1 0 0 1 1

Figure 6.5: RSA Encryption Times Raw Data

6.2. RAW DATA l

RSA Decryption Times - Milliseconds

Data Set Size in Characters

Run

Number
50 100 150 200 250 300 350 400 450 500

1 13 27 29 10 10 11 10 10 12 13

2 12 14 10 10 10 9 10 10 11 11

3 9 10 11 9 10 11 10 10 10 10

4 11 11 10 10 10 9 10 11 10 9

5 9 12 12 10 10 10 10 10 10 10

6 10 11 11 10 11 10 10 10 14 10

7 10 10 10 10 10 10 11 9 10 11

8 10 10 10 10 9 10 10 9 11 10

9 10 10 10 10 10 11 10 11 11 10

10 10 10 10 10 10 10 11 10 11 10

11 10 10 10 10 10 9 9 10 11 11

12 9 11 10 0 16 17 0 15 21 0

13 0 10 9 10 10 10 10 11 10 10

14 9 9 9 11 9 9 10 9 10 10

15 10 11 11 18 10 10 11 10 10 10

16 11 10 9 11 10 10 9 9 9 10

17 16 10 10 9 10 11 10 9 14 10

18 11 10 10 10 9 10 10 11 10 10

19 10 9 10 10 10 10 9 9 10 9

20 11 10 10 9 10 9 10 10 9 9

Figure 6.6: RSA Decryption Times Raw Data

	Introduction
	Background Information
	256-bit Hashing Algorithms vs. 4096 bit Key Based Algorithms
	AES
	Typical Use Cases
	Mathematical Algorithm

	RSA
	Typical Use Cases
	Mathematical Algorithm

	Experiment Methodology
	Dependant Variables
	Time

	Controlled Variables
	Experimental Procedure (AES-CBC-256)
	Experimental Procedure (RSA-4096)

	Experiment Results
	Tabular Data Presentation
	Graphical Data Presentation
	Data Analysis
	Analyzing Key Generation Times
	Analyzing Encryption Times
	Analyzing Decryption Times

	Conclusions
	References
	Appendix
	Source Code
	Raw Data

